717 research outputs found

    Steady-state entanglement activation in optomechanical cavities

    Full text link
    Quantum discord, and a number of related indicators, are currently raising a relentless interest as a novel paradigm of non-classical correlations beyond entanglement. Beside merely fundamental aspects, various works have shown that discord is a valuable -- so far largely unexplored -- resource in quantum information processing. Along this line, quite a striking scheme is {entanglement activation}. An initial amount of discord between two disentangled parties of a multipartite system affects the dynamics so as to establish entanglement across a bipartition, which would not arise otherwise. To date, such a process was proven to be achievable only dynamically, i.e., with no guarantee of a stationary entanglement throughput in the presence of noise. Here, we discover a {\it discord-activated mechanism yielding steady-state entanglement} production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.Comment: 5+4 pages, 5+1 figures (main text + supplementary materials

    Fathoming the kynurenine pathway in migraine: why understanding the enzymatic cascades is still critically important

    Get PDF
    Kynurenine pathway, the quantitatively main branch of tryptophan metabolism, has been long been considered a source of nicotinamide adenine dinucleotide, although several of its products, the so-called kynurenines, are endowed with the capacity to activate glutamate receptors, thus potentially influencing a large group of functions in the central nervous system (CNS). Migraine, a largely unknown pathology, is strictly related to the glutamate system in the CNS pathologic terms. Despite the large number of studies conducted on migraine etio-pathology, the kynurenine pathway has been only recently linked to this disease. Nonetheless, some evidence suggests an intriguing role for some kynurenines, and an exploratory study on the serum kynurenine level might be helpful to better understand possible alterations of the kynurenine pathway in patients suffering from migrain

    Ultra-efficient Cooling in Ferromagnet-Superconductor Microrefrigerators

    Full text link
    A promising scheme for electron microrefrigeration based on ferromagnet-superconductor contacts is presented. In this setup, cooling power densities up to 600 nW/μ\mum2^2 can be achieved leading to electronic temperature reductions largely exceeding those obtained with existing superconductor-normal metal tunnel contacts. Half-metallic CrO2_2/Al bilayers are indicated as ideal candidates for the implementation of the device.Comment: 9 pages, 3 figures, submitted to Applied Physics Letter

    Transparent gap filler solution over a DVB-RCS2 satellite platform in a railway scenario: performance evaluation study

    Get PDF
    In this work, a performance study of a system equipped with a transparent Gap Filler solution in a DVB-RCS2 satellite platform has been provided. In particular, a simulation model based on a 3-state Markov chain, overcoming the blockage status through the introduction of a transparent Gap Filler (using devices on both tunnel sides) has been implemented. The handover time, due to switching mechanism between satellite and Gap Filler, has been taken into account. As reference scenario, the railway market has been considered, which is characterized by a N-LOS condition, due to service disruptions caused by tunnels, vegetation and buildings. The system performance, in terms of end-to-end delay, queue size and packet loss percentage, have been evaluated, in order to prove the goodness of communications in a real railroad path

    Thermoelectric efficiency of three-terminal quantum thermal machines

    Get PDF
    The efficiency of a thermal engine working in linear response regime in a multi-terminals configuration is discussed. For the generic three-terminal case, we provide a general definition of local and non-local transport coefficients: electrical and thermal conductances, and thermoelectric powers. Within the Onsager formalism, we derive analytical expressions for the efficiency at maximum power, which can be written in terms of generalized figures of merit. Also, using two examples, we investigate numerically how a third terminal could improve the performance of a quantum system, and under which conditions non-local thermoelectric effects can be observed.Comment: 21 pages, 10 figures. Final versio

    Optical emission spectroscopy study of the expansion dynamics of a laser generated plasma during the deposition of thin films by laser ablation

    Get PDF
    The dynamics of the expanding plasma produced by excimer laser ablation of different materials such as silicon, silicon carbide, graphite and tin powder were studied by means of time integrated, spatially resolved emission spectroscopy and fast photography imaging of the expanding plasma. Experiments were performed both in vacuum and in different pure background atmosphere (i.e. oxygen or nitrogen) and, finally, in gaseous mixtures (i.e. in O2/Ar and N2/Ar mixtures). These investigations were performed to gather information on the nature of the chemical species present in the plasma and on the occurrence of chemical reactions during the interaction between the plasma and the background gas. Then, we tried to correlate the plasma expansion dynamics to the structural and physical properties of the deposited materials. Experimental results clearly indicate that there is a strong correlation between the plasma expansion dynamics and the structural properties of the deposited thin films. In this respect, the investigations performed by means of fast photography and of optical emission spectroscopy revealed themselves as powerful tools for an efficient control of the deposition process itself

    Microservices and serverless functions – lifecycle, performance, and resource utilisation of edge based real-time IoT analytics

    Get PDF
    Edge Computing harnesses resources close to the data sources to reduce end-to-end latency and allow real-time process automation for verticals such as Smart City, Healthcare and Industry 4.0. Edge resources are limited when compared to traditional Cloud data centres; hence the choice of proper resource management strategies in this context becomes paramount. Microservice and Function as a Service architectures support modular and agile patterns, compared to a monolithic design, through lightweight containerisation, continuous integration / deployment and scaling. The advantages brought about by these technologies may initially seem obvious, but we argue that their usage at the Edge deserves a more in-depth evaluation. By analysing both the software development and deployment lifecycle, along with performance and resource utilisation, this paper explores microservices and two alternative types of serverless functions to build edge real-time IoT analytics. In the experiments comparing these technologies, microservices generally exhibit slightly better end-to-end processing latency and resource utilisation than serverless functions. One of the serverless functions and the microservices excel at handling larger data streams with auto-scaling. Whilst serverless functions natively offer this feature, the choice of container orchestration framework may determine its availability for microservices. The other serverless function, while supporting a simpler lifecycle, is more suitable for low-invocation scenarios and faces challenges with parallel requests and inherent overhead, making it less suitable for real-time processing in demanding IoT settings

    Residuated structures and orthomodular lattices

    Get PDF
    The variety of (pointed) residuated lattices includes a vast proportion of the classes of algebras that are relevant for algebraic logic, e.g., ℓ-groups, Heyting algebras, MV-algebras, or De Morgan monoids. Among the outliers, one counts orthomodular lattices and other varieties of quantum algebras. We suggest a common framework—pointed left-residuated ℓ-groupoids—where residuated structures and quantum structures can all be accommodated. We investigate the lattice of subvarieties of pointed left-residuated ℓ-groupoids, their ideals, and develop a theory of left nuclei. Finally, we extend some parts of the theory of join-completions of residuated ℓ-groupoids to the left-residuated case, giving a new proof of MacLaren’s theorem for orthomodular lattices

    Collective negative shocks and preferences for redistribution: Evidence from the COVID-19 crisis in Germany

    Get PDF
    Using new data from a three-wave panel survey administered in Germany between May 2020 and May 2021, this paper studies the impact of a negative shock affecting all strata of the population, such as the development of COVID-19, on preferences for redistribution. Exploiting the plausibly exogenous change in the severity of the infection rate at the county level, we show that, contrary to some theoretical expectations, the worse the crisis, the less our respondents expressed support for redistribution. We provide further evidence that this is not driven by a decrease in inequality aversion but might be driven by the individuals’ level of trust

    Separation of heat and charge currents for boosted thermoelectric conversion

    Full text link
    In a multi-terminal device the (electronic) heat and charge currents can follow different paths. In this paper we introduce and analyse a class of multi-terminal devices where this property is pushed to its extreme limits, with charge andand heat currents flowing in different reservoirs. After introducing the main characteristics of such heat−chargeheat-charge currentcurrent separationseparation regime we show how to realise it in a multi-terminal device with normal and superconducting leads. We demonstrate that this regime allows to control independently heat and charge flows and to greatly enhance thermoelectric performances at low temperatures. We analyse in details a three-terminal setup involving a superconducting lead, a normal lead and a voltage probe. For a generic scattering region we show that in the regime of heat-charge current separation both the power factor and the figure of merit ZTZT are highly increased with respect to a standard two-terminal system. These results are confirmed for the specific case of a system consisting of three coupled quantum dots.Comment: 12 pages, 8 figure
    • …
    corecore