
Journal Pre-proof

Microservices and serverless functions – lifecycle, performance, and
resource utilisation of edge based real-time IoT analytics

Francesco Tusa, Stuart Clayman, Alina Buzachis, Maria Fazio

PII: S0167-739X(24)00052-9
DOI: https://doi.org/10.1016/j.future.2024.02.006
Reference: FUTURE 7161

To appear in: Future Generation Computer Systems

Received date : 16 July 2023
Revised date : 1 February 2024
Accepted date : 10 February 2024

Please cite this article as: F. Tusa, S. Clayman, A. Buzachis et al., Microservices and serverless
functions – lifecycle, performance, and resource utilisation of edge based real-time IoT analytics,
Future Generation Computer Systems (2024), doi: https://doi.org/10.1016/j.future.2024.02.006.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier B.V.

https://doi.org/10.1016/j.future.2024.02.006
https://doi.org/10.1016/j.future.2024.02.006


Journal Pre-proof

Microservices and Serverless Functions – Lifecycle, Performance, and Resource

Abstract

Edge Computi tomation
for verticals s al Cloud
data centres; h rvice and
Function as a htweight
containerisatio y initially
seem obvious software
development a s and two
alternative typ nologies,
microservices ons. One
of the serverle functions
natively offer ices. The
other serverles hallenges
with parallel r

Keywords: Ed

1. Introducti

The Intern
ments of emb
pursue a comm
time the mass
connected ent
ness models a
porting the cr
across various
duces new req
the computing
tasks. New de
as well as for
taken into acc
plication layer

Using Clo
as large amoun
producers to t
quired comput
would incur d
affect the expe

∗Correspondin
Email addres

ployed at
his prob-
possible

e idea by
rk to its

sition de-
ated with
re, Edge
commu-

T scenar-
based on

tural de-
energy-
account

has been
rce types
rk. It can
trade-offs
nd scala-
ics of the
he Edge-

, accord-

Preprint submitte ary 1, 2024

REVISED Manuscript Click here to view linked References
Jo
ur

na
l P

re
-p

ro
of

Utilisation of Edge based Real-time IoT Analytics

Francesco Tusaa,b,∗, Stuart Claymanb, Alina Buzachisc, Maria Fazioc,d

aUniversity of Westminster, London W1B 2HW, UK
bUniversity College London, London WC1E 6BT, UK

cUniversity of Messina, 98166, Messina, Italy
dGruppo Nazionale per il Calcolo Scientifico (GNCS) - INdAM, Rome, Italy

ng harnesses resources close to the data sources to reduce end-to-end latency and allow real-time process au
uch as Smart City, Healthcare and Industry 4.0. Edge resources are limited when compared to tradition
ence the choice of proper resource management strategies in this context becomes paramount. Microse
Service architectures support modular and agile patterns, compared to a monolithic design, through lig
n, continuous integration / deployment and scaling. The advantages brought about by these technologies ma

, but we argue that their usage at the Edge deserves a more in-depth evaluation. By analysing both the
nd deployment lifecycle, along with performance and resource utilisation, this paper explores microservice
es of serverless functions to build edge real-time IoT analytics. In the experiments comparing these tech
generally exhibit slightly better end-to-end processing latency and resource utilisation than serverless functi
ss functions and the microservices excel at handling larger data streams with auto-scaling. Whilst serverless
this feature, the choice of container orchestration framework may determine its availability for microserv
s function, while supporting a simpler lifecycle, is more suitable for low-invocation scenarios and faces c

equests and inherent overhead, making it less suitable for real-time processing in demanding IoT settings.

ge analytics, Function as a Service, IoT, Microservices, real-time, serverless computing.

on

et of Things (IoT) envisions large-scale deploy-
edded devices that interact with each other to
on goal [1]. Gathering and harnessing in real-

ive amount of data generated by all those inter-
ities can help organisations to develop new busi-
nd streamline operational processes, hence sup-
eation of more innovative products and services
industries [2]. However, this strategy also intro-
uirements for both the distributed network and
infrastructures involved in the data processing

mands for mobility support and geo-distribution,
location awareness and low latency, have to be

ount when setting up the required end-to-end ap-
.
ud Computing would not be ideal in this context,
ts of data needs to be transferred—from the data

he centralised data centres— to perform the re-
ation. As a result, considerable round-trip delays
uring this communication and could ultimately
rienced Quality of Service (QoS) [3]. Therefore,

g author
s: f.tusa@westminster.ac.uk (Francesco Tusa)

since IoT and data acquisition devices are usually de
the edge of the network, a more effective solution to t
lem may use computing resources that are as close as
to the location where the data are generated [4].

The Edge Computing paradigm realises the abov
shifting the computation from the core of the netwo
edge, i.e., to resources located close to the data acqui
vices, thereby dramatically reducing the latency associ
the data transfer [4]. Thanks to its distributed natu
Computing introduces advantages in terms of reduced
nication time, which makes it a viable approach for Io
ios where real-time process automation is executed
the data collected from the “things”.

Edge Computing requires an efficient architec
sign where both the computation-constrained and
constrained nature of the edge nodes is taken into
[5]. Consequently, a hybrid distributed infrastructure
emerging based on the combination of different resou
distributed across the edge and the core of the netwo
be seen as a spectrum of computing options where the
between latency, bandwidth, availability, reliability, a
bility vary depending on the location and characterist
computing nodes, and is commonly referred to as t
Cloud Continuum [6, 7].

A well-engineered use of the resource continuum

d to Future Generation Computer Systems Febru



Journal Pre-proof

ing to an application’s requirements, can improve the data pro-
cessing latency and reduce the volume of data needed to be
transferred fro
Therefore, unl
alytics typical
edge resource
tasks with flex
sources, are de
tinuum, extend

Meanwhil
sign patterns a
ing microserv
known as fun
timely growth
such as contai
place of tradi
agile software
flows. These,
led to the rise
third-party pro
the on-demand

The Serve
braces this ap
stateless funct
runtime envir
This aims to
tructure as a S
managed resou
use model and

1.1. Contribu
Microserv

containerisatio
significantly s
over, deployin
more effective
in improved r
tems. While s
transitioning t
the design of a
which they ca

In our prev
face exposed
affect both the
wards the edg
required by an
ing of the rec
are significant
technology, d
frameworks ut

Based on t
aims to answe
viable techno
form real-tim
the advantage
immediately a
pacting factors

fore, in addition to an investigation of the mechanisms involved
in the development and deployment of real-time IoT edge ana-

llocation
ations on
sand sen-
ages/sec;
the maxi-

of infras-
services

cross the
ntify the
FaaS and
tilisation
resource-
lment of
ns in the

atency of

types of
entail a

iner con-
r end-to-
pared to

elow 25k
ess func-
but their

ation and
e type of
s of up to
nherently
microser-
rating the
and more
n is suit-
h serving
g it inap-
settings.

usses the
his work;
ytics sce-
vides the
whereby

Section 7
e work.

rces—in
ealthcare
t can be
te proac-
location

ucers are
ove areas
Jo
ur

na
l P

re
-p

ro
of

m the end devices to the network’s core [8].
ike traditional data analytics, real-time edge an-
ly performs a first processing stage on the limited
s near the data sources. Long-term processing
ible real-time demands, requiring additional re-
legated to the other layers of the computing con-
ing up to the cloud data centres.

e, emerging modular and scalable application de-
re replacing monolithic systems with cooperat-

ices or with even smaller building components
ctions [9]. This trend has been nurtured by the
of more lightweight virtualisation technologies,

ners and microVMs (micro Virtual Machines) in
tional VMs [10], as well as by the adoption of

continuous integration and development work-
coupled with event-driven programming, have

of Serverless Computing—a paradigm whereby
viders allocate resources dynamically to support
execution of computing services.

rless Function as a Service (FaaS) model em-
proach by allowing application logic, written as
ions, to be executed on-demand by containerised
onments without pre-allocating resources [11].
overcome some of the limitations of the Infras-
ervice (IaaS) Clouds by delivering a third-party
rce infrastructure, accessible via a pure pay-per-
supporting effortless scalability [12].

tions of this Work
ice and FaaS architectures leverage lightweight
n technologies to allocate their components in a
horter time frame than traditional VMs. More-
g applications based on these patterns can align
ly with the users’ computing demands, resulting
esource utilisation compared to monolithic sys-
eemingly ideal for the Edge Computing context,
o these new technologies imposes constraints on
pplication components and the interfaces through
n be accessed externally.
ious work [13], we demonstrated how the inter-

by edge analytics applications can considerably
number of bytes transmitted over the network to-

e and the amount of CPU and memory resources
edge node to perform even the simple decod-

eived IoT data. We identified that those metrics
ly impacted by the messaging protocol, network
ata format, and the programming language and
ilised for the implementation.
he above results, the research question this paper
r is: are Microservice and FaaS architectures
logies for executing edge applications that per-
e IoT analytics tasks? It is essential to note that
s of using these models at the edge may not be
pparent, and it is crucial to consider various im-
when trying to answer this question [14]. There-

lytics applications, this paper evaluates the resource a
aspects associated with the execution of those applic
large-scale IoT scenarios: a Smart Factory with a thou
sors and a maximum cumulative data rate of 25k mess
a Smart City with ten thousand sensors and ten times
mum data rate of the previous scenario.

The analysis is conducted from the perspective
tructure providers or service providers delivering IoT
to their customers through resources distributed a
Edge-Cloud continuum. The primary goal is to ide
most suitable approach, choosing between Serverless
Microservice architectures, to enhance the resource u
of these providers’ infrastructures—focussing on the
constrained edge. The evaluation considers the fulfi
the performance requirements of customers’ applicatio
IoT context of this paper—the end-to-end processing l
real-time analytics.

Experiments involving microservices and two
serverless functions reveal that, while microservices
less abstract lifecycle with hands-on tasks like conta
figuration, they consistently demonstrate slightly bette
end processing latency and resource utilisation com
serverless functions, when the data volume remains b
messages/sec. In contrast, the two types of serverl
tions we examined present a more abstract lifecycle,
performance varies based on the frequency of invoc
data batch sizes. Moreover, the microservices and on
serverless function excel at handling large data stream
250k messages/sec with auto-scaling. This feature is i
provided by FaaS architectures, but its availability for
vices may depend on the framework used for orchest
associated containers. Despite supporting a simpler
abstract lifecycle, the other type of serverless functio
able for low-invocation scenarios only. It struggles wit
parallel requests due to its intrinsic overhead, makin
propriate for real-time processing in high-demand IoT

The paper is organised as follows. Section 2 disc
background concepts and existing research related to t
Section 3 describes the Edge Computing and IoT anal
narios considered in this paper, while Section 4 pro
details of the testbed; Section 5 describes the criteria
the experiments of Section 6 were performed; finally,
concludes the work and sheds lights on potential futur

2. Background

2.1. IoT Real-time Analytics and Edge Computing

Sensors within machines, devices, or other sou
areas such as Smart Factories, Smart Cities, and H
applications—produce a massive amount of data tha
processed to gain valuable insights and possibly crea
tive and predictive business models [2]. Due to their
in machinery at the network’s border, those data prod
commonly referred to as the edge. Many of the ab

2
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require that the data produced at the edge is processed in real-
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en the data generation and the availability of the
ults should be as small as possible and ideally
3].
volume of data generated at the edge continu-
s, and the real-time processing requirements are
re stringent for certain applications, the sole use
cloud resources is showing its limitations. Hence,
d network resources located along the path be-
source and the Cloud might be utilised to reduce

ommunication latency between the edge and the
work. These objects, usually available at the edge
, are named edge nodes [4].
Computing paradigm is an extension of the tra-

Computing model wherein additional compu-
handling and networking resources (nodes) are
o the end devices. The consequence of this exten-
the tasks requiring data management and process-
th storage and networking communication, can
ccur on centralised cloud servers but also on the
odes available between those servers and the end

hereby, Edge Computing becomes extremely use-
ency applications, as well as for applications that
ormous amount of data that, due to bandwidth

nnot practically be transferred to cloud servers in
.

vices, Functions and Serverless Computing

e last few years, monolithic applications have
ds service-oriented architectures and, more re-
oservice architectures. These are based on small
upled components, where each piece can be ex-
mously for a specific task. The Function as a
) model considers even smaller components at

of stateless functions. These are created just
ing the users’ requests, and combined to build

, highly modular services [14]. This evolution-
een sustained by the affirmation of event-driven
and the usage of continuous integration and con-
pment technologies. Furthermore, the rise and
ntainerisation, led by Docker [16], played a sig-
the above process, as it facilitated the execution

service components within lightweight, isolated
[17].
the traditional IaaS clouds allow for the alloca-
s on-demand, they fall short of a pure pay-per-

odel and of scalability mechanisms transparent
ho would have to implement their auto-scaling
Serverless Computing builds on the advances

by the usage of Microservice and FaaS architec-
iven programming and containerisation, and tries
e above limitation of IaaS clouds by introducing
-use model along with effortless scalability [12].
ne step forward in the abstraction staircase from
m as a Service (PaaS). It provides customers with

virtualisation technologies [18]. Therefore, the life-cy
agement of the VMs/containers, their images, and the
monitoring the servers will be entirely delegated to th
less provider [19].

Available Serverless Providers include Amaz
Lambda, Azure Functions, Google Cloud Functio
Cloud Functions and Oracle Fn [20]. The last two have
their tools as open-source projects (respectively, Op
and Fn project); Amazon has also recently open-sour
cracker, the platform on which AWS Lambda is base
while, the research community has been actively de
easy-to-use Serverless solutions such as OpenFaaS [
for the experiments presented in this paper), Fission, K
etc. All those serverless platforms can be analysed
pared based on the following list of provided features
tions composition and communication patterns; ii)
invocation / triggering methods (e.g., request-reply,
etc.); iii) resource provisioning and scaling specificati
CPU, memory or both); iv) resource abstractions or v
tion (e.g., containers or microVMs [22]); v) supported
ming languages.

2.3. Related Work
Our previous work [13] considered utilising micr

for the execution of real-time edge analytics and sole
tigated the impact of various encoding and transmis
tocols on the edge resource utilisation, leaving the an
the actual computing tasks as future work. This paper
ments our previous findings and provides further insig
resource utilisation of the actual data analysis when
croservice and FaaS frameworks are considered. Earli
have shown that using JSON over HTTP/REST, widely
by many of those frameworks, requires more CPU
than other types of data encoding (e.g., XDR) and tran
mechanisms (e.g., WebSockets). Nonetheless, these
gies are utilised by the tools chosen for the evaluation
in this paper, as they are the de-facto solution adopte
tributed cloud scenarios and by most of the existing M
vice and FaaS solutions.

The authors of [3] present an analysis of the state-
on using Edge Computing in Smart Factory to execu
ical calculations in real-time. In paper [4], the usag
croservices running at the edge is investigated for the e
of IoT analytics. In paper [17], a modular and scalable
ture based on lightweight Docker containers is prese
its suitability to process IoT data at the edge is evalu
nally, an IoT platform that combines microservices an
less Computing to process data in a smart farming sc
discussed in [23].

The work presented in [14] provides an in-depth
tive evaluation of the suitability of Serverless Computi
edge. In [24], the authors analyse the resource utilisati
plications designed according to the FaaS model and
on inexpensive Single Board Computers to process
erated by an IoT service platform. The evaluation of

3



Journal Pre-proof

less edge platform that supports real-time data-intensive appli-
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erverless frameworks is assessed in [26], but the
ot performed at the large scale targeted by our

s not include a comparison with the deployment
reallocated containers.
by concerns about power consumption in data
ht about by the rise of cloud technologies, the
cy of serverless computing is evaluated in [27].
eal OpenFaaS’s [21] enhanced power efficiency
ker [16], especially when subjected to high CPU
emands.
the dynamics of the costs when using serverless
pared to IaaS deployments is presented in [28].

serverless may not consistently save user costs,
ers to diversify use scenarios. Current pricing
hallenges, prompting the proposal of an auction-
system for serverless, reducing function costs for
compromising provider revenue, as demonstrated
al results.
above state-of-the-art analysis, it emerges that
ne in this area evaluates the usage of edge ap-
inimise the processing latency of real-time an-

ering Microservice or FaaS models. Other work
nergy and cost implications of using these archi-
ever, there is currently no comprehensive quanti-
son between these two approaches for processing
ata in real-time at the edge—a direct and detailed
cted on an actual testbed under real conditions is
ailable. Our paper aims to fill this gap by pro-
nsive evaluation and comparison of the lifecycle,
nd resource utilisation of edge real-time IoT an-

mented as microservices deployed within preal-
ners versus functions executed via the Serverless
radigm.

considers the reference scenario in Figure 1, a
multi-layered computing infrastructure for pro-
e IoT data, referred to as the Edge-Cloud Con-
At the bottom layer, a large-scale deployment of
enerates a vast amount of data to be processed.
se are small, low-maintenance, low-power con-

ces that are deployed in the field for extended du-
imes up to a decade. Although some IoT devices
edded computation capabilities, those that do not
feature are mainly considered in this work.

equence, data from the devices is offloaded and
arious layers within the Edge-Cloud Continuum,
the nature of the required tasks and the available
ch layer. Initially, IoT data undergoes local pre-

accessible local devices before being transmitted
ent layers in the computational hierarchy, encom-
ge and ultimately the cloud [6]. As shown in
eference scenario includes components deployed
separate layers: the IoT Adaptation layer and the

While using edge resources can reduce the data
sion latency compared to a centralised cloud model
duces inherent resource and energy constraints that
be considered. Therefore, further long-term process
with non-stringent real-time requirements, demanding
sources, cannot be executed at the edge and have to be
to the Long-term Cloud Processing in the cloud. Ra
evaluating the unified orchestration of the above data
ing on the whole spectrum of the resources of the Ed
Continuum, this work assesses the execution of real-
analytics tasks inside the Real-time Edge Processing l
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Figure 1: Reference computing scenario

To better understand the context of the proposed
scenario, some possible application domains are now b
troduced. A Smart Factory uses connected devices,
ery, and sensors to create flexible and self-adapting p
systems. In particular, massive amounts of data gen
IoT devices deployed in a smart production line are p
in real-time to collect valuable insights that can hel
downtimes, improve production efficiency, achieve l
ergy consumption, etc. Likewise, in a Smart City
CCTV cameras and analytics functions would be u
process data for detecting and preventing specific situ
real-time, e.g., accidents, crimes, potential threats, or
nise particular features (face recognition, demograph
The details of those three layers are discussed below.

3.1. IoT Adaptation

The IoT adaptation layer is characterised by limi
puting capacity but minimal data transmission latency
mary role is collecting data from diverse types of IoT
deployed within an IoT domain. This layer acts a
straction, effectively concealing potential heterogenei
formats and presenting a harmonised IoT dataset thro
cesses such as re-encoding and re-aggregation. The
dataset adheres to a specific encoding/serialisation
and is subsequently relayed to the upper processing
noted as the Real-time Edge Processing. As the abo
tation operations do not require substantial computin
they can be executed on nodes close to the IoT devi
as the IoT Gateways, with minimum data transmissio
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Such an adaptation layer is often used in orchestrated dis-
tributed cloud environments to normalise data [29].
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Edge Processing

in the proximity of the IoT domain, such as
edge servers, nodes of the mobile access net-
er heterogeneous network nodes, can become

ibuted pool that provides enough computational
r executing real-time analytics with acceptable
ion latency [30]. The Real-time Edge Process-
ists of a dynamic number of processing elements
rchestrated [8], i.e., created and destroyed on-
rding to the characteristics of the received data.

tion is expected to happen without intermediate
age to minimise the resulting end-to-end process-
].
ative implementations of this layer have been de-
t of this work—a first one based on microservices
, and a second one built via serverless functions.

th been used to support the main evaluation tar-
paper, which was already briefly introduced in
ections. Relevant experiments have been car-
on those implementations to identify which tech-
microservices and serverless functions, is more
a resource utilisation and latency perspective—

on of real-time IoT analytics at the edge.

Cloud Processing

term Cloud Processing layer deals with complex
ks, possibly involving vast amounts of data, that
ed to be performed with strict real-time guaran-
is usually processed offline, this layer is decou-
data producers via the introduction of Data Lakes
igure 1). This type of operation usually requires

rce capabilities compared to the ones available at
this work is focussed on the real-time process-
above reference scenario, this layer will not be

the rest of the paper.

plementation

ent the reference scenario presented in Figure 1,
t the performance evaluation of this work, a dis-
d, consisting of various hardware and software
as used. The details are described in this section.
focuses on the two bottom layers of the refer-

. The testbed representation of Figure 2 shows
Domain is implemented as a cloudlet, on which
Edge Processing functionalities are executed; the

comprised of a distributed network of software
ferred to as the IoT Ecosystem.

are point of view, the testbed consists of three rel-
lusters of compute and network resources—Clay,

hosted at University College London (UCL).
ter comprises five servers with 2x AMD Quad-
2347HE @1.9GHz and 32GB of memory. The

'DWD�&ROOHFWLRQ

«
����V

6RIWZDUH�
,R7�*DWHZD\

'

*:

«
����V

6RIWZDUH�,R7�'HYLFHV

,R7�(FRV\VWHP

6RIWZDUH�
,R7�*DWHZD\

$GDSWRU $GDSWRU $ ,

«

(
[S
HU
LP
HQ
W�0

DQ
DJ
HU

0
HW
ULF
V�
&
RO
OH
FW
RU

&OD\�&OXVWHU

7R
RO
V�
IR
U�(

[S

Figure 2: Hardware and Software Components of the Testb

Gas cluster comprises four servers with 4x Intel Q
Xeon E5520 @2.27GHz and 32GB of memory. Fi
Edu cluster includes three servers with 4x Intel 12-C
E5-2650 v4 @2.20GHz and 192GB of memory. All th
are inter-connected via a 1 Gbps Ethernet Local Area
(LAN) and run the Linux Rocky 9 OS with kernel vers

As Figure 2 shows, two of the above clusters—
Gas—were specifically utilised to run the software com
of the IoT Ecosystem and the Real-time Edge Proce
spectively. Additionally, the Clay cluster was dedicate
ing the necessary tools for managing and executing exp
involving these components, which from now on in
will be referred to as subsystems.

The IoT Ecosystem is a software IoT platform th
ates and pushes streams of data towards the Real-ti
Processing subsystem; the Real-time Edge Processin
ments the functionalities to perform real-time compu
those IoT data, using either microservices or serverl
tions; finally, the Tools for Experiments is the subsy
automates the configuration of experiments and the c
of measurements for the performance evaluation.

Using separate clusters to deploy the above su
made it possible to replicate on our testbed the sam
ing conditions of an actual IoT scenario. Specifically
cluster acted as a cloudlet—a resource-constrained e
centre—on which the two alternative implementatio
Real-time Edge Processing were executed during th
mance evaluation. The generation of the large volum
required for the experiments via the IoT Ecosystem d
relatively high resource capabilities. Therefore, Edu
lected for running that subsystem, as it is the cluste
ing the highest capacity in the testbed. The Edu and
clusters were interconnected via an existing 1 Gbps
network, which allowed reproducing the communicat
whereby, in an actual IoT scenario, the data generate
IoT Domain is transferred to the Edge Domain.

Whilst the IoT Ecosystem and the Tools for Exp
(running on the Clay cluster) subsystems are both critic
setup of this experimentation environment, it should
that the core of our quantitative performance analysis
around the number of resources consumed by the R
Edge Processing on the Gas cluster. The usage of a
IoT Ecosystem does not affect the general meaning o
sults presented in this paper, as these mainly depend
the components deployed in the Edge Domain beha
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they receive and process IoT data; however, how those data are
generated by the IoT Domain is not relevant to the rest of the
system and ca
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n be abstracted away.

ystem

stem can reproduce via software the actual be-
cale of a real-world IoT domain with thousands
hings” [13]. It was deployed on the Edu Cluster
lly programmable software IoT Domain to gen-
m streams of data required for our performance

he IoT Ecosystem’s implementation is based on
eatures and composable software elements of the
ring framework [32] [33], which were used as
for building both its Data Generation and IoT

mponents, as represented in Figure 2.
Generation allows the definition of topologies of
evices of various sizes, where each device can be

o generate data at a given rate. Although both the
encoding of those data can be fully customised,
asurements were considered during our experi-
logy is described by a set of the above Software
tached to various Software IoT Gateways. While
iplexers, the gateways also support the execution

manipulation tasks. Figure 2 shows that basic
g operations can be performed via different Adap-

to the Software IoT Gateways. In effect, these
the distributed IoT Adaptation component of this
ich is responsible for i) receiving the multiplexed
a from the Software IoT Gateways; ii) grouping
atches of a given size; iii) encoding those batches
c data interchange format; and iv) sending each
o the Real-time Edge Processing.
cosystem can be customised to implement a spe-
ntal scenario by adjusting the number of Software
d the rate at which they generate data. Likewise,
Software IoT Gateways, and the type of Adaptors
m, can be selected; finally, for each Adaptor, the
f the Real-time Edge Processing, and the size of
data to be transmitted, can both be configured.
can be found in [13].

Edge Processing

stem plays a key role in the performance evalua-
per. Consistently with the idea of real-time ana-
ments a data processing workflow that needs to be
source-constrained edge nodes in real-time. The
s of this workflow are represented by the inter-

of components shown in the top part of Figure 2.
lection acts as the ingress point of the workflow,
tches of data generated by the IoT Ecosystem. At
g step, the output of one component is provided
next one in the workflow until the Data Aggrega-
ntually performed, and a result is produced as the
s discussed, in this work, we developed and eval-
native versions of the Real-time Edge Processing
igure 2. The first one consists of microservices

tasks, where each task is built via serverless functions
Currently, JSON and HTTP/REST are the de-fa

tions for implementing the communication layer of a d
system, thanks to the loose coupling and high degr
teroperability they deliver [34]. Many Microservice
frameworks use these technologies to implement the
interfaces of their components. This practice exten
tools used in this work, specifically Flask [35] micr
deployed on Docker Swarm [36] and the serverless
managed by OpenFaaS [21].

This choice was motivated by the broad support th
receive from the open-source community and by the
lower demand for computational resources they exh
pared to similar solutions [37], which is relevant for
constrained edge nodes. Nonetheless, the tools shoul
considered possible examples of systems based on t
technologies. Therefore, our choice of using them
testbed to support the experiments is not to be deeme
directly impacting the collected measurements and th
validity of the subsequent results.

We had previously determined that using JS
HTTP/REST might introduce transmission/decoding
into a distributed system [13]. Hence, our approach
gating this issue consisted of aggregating IoT data a
of different sizes before they are sent to the Real-ti
Processing for computation. Python was also chos
preferred programming language for both the Microse
FaaS implementations of this subsystem. Python is f
ported by the chosen frameworks, it is well integr
their development workflow, and it provides data analy
tionalities through the Pandas library [38]. Moreove
shows lower memory requirements than other langua
as Java, thus becoming the obvious choice for de
applications that are expected to run on resource-co
edge nodes [13].

4.2.1. Microservice Implementation
This version of the Real-time Edge Processing

tem adopts a modular architecture comprised of micro
wherein each microservice corresponds to a specific t
workflow illustrated in Figure 2. These microservi
instantiated as separate Docker containers deploye
the Gas cluster of the testbed. The Gas cluster s
cloudlet, i.e., a resource-constrained edge data centre
via Docker Swarm—Docker’s lightweight native con
chestration engine for clusters.

Each microservice represents a RESTful Flask web
tion that receives data POSTed via HTTP, performs the
processing tasks, and returns the result in the HTTP
JSON was the data format exchanged over HTTP/RE
running, the whole processing application receives bat
JSON arrays) of IoT measurements POSTed to the R
point of the (ingress) Data Collection microservice.

The cloudlet utilised for allocating the above
vices encompasses three nodes, consisting of one m
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facilitate the instantiation of the containers, a
se descriptor was employed to define the indi-
rvices and outline their intercommunication ap-
specifically, following the Docker Swarm’s de-

cheduling strategy [39], the microservices were
oss the available hosts of the cloudlet so that an
n of the cluster’s resources was ensured. More-
ld seamlessly communicate through an overlay
on top of the existing Ethernet connection of the
tablished at deployment time by Docker Swarm.

siderations. The microservices were developed
d built using the Flask 1.1 microframework [35].
to implement the required external web-based

eatures provided by Pandas 1.1.3 [38] were used
nalysis/manipulation. The default Flask web
laced by a production-ready Waitress 1.4 [40],

one worker thread. This implementation of the
e Processing subsystem implied direct exposure
el setup and deployment aspects of the Docker
oreover, different Docker images had to be cre-
cker Registry repository by hand, based on the
le alpine-python3 image; additional package de-

e., numpy and pandas) had to be explicitly spec-
evant Dockerfiles. Finally, references to the cre-
ere explicitly added to the docker-compose that
whole application, together with the details of
iners communicate (i.e., endpoints, ports, over-

plementation
on of the Real-time Edge Processing subsystem
s functions, managed by the OpenFaas frame-
uild each of the tasks of the workflow illustrated

Similar to the Microservice implementation de-
, this version was also developed in Python 3 and
res offered by Pandas 1.1.3. However, it did not
ditional development of the functions’ external

OpenFaaS provides a collection of predefined
various programming languages that enable de-
eate functions easily. These templates include a
that is automatically generated for each function.
ly need to add their specific function logic to the
ignated handle method. Docker images and con-
l generated and utilised for function instantiation
unction is created using a template. However,
nages these operations transparently, abstracting
software development workflow and system ad-

ld Start. Cold start of functions is one of the
oncerns associated with FaaS architectures. It
ing containers created on-demand—per function
nd removed when that function receives no fur-
ithin a given time frame. Even though creating a

for the first time on a given host, as its image has to b
from a remote registry. Additional delays can then b
tially introduced by the container orchestration system
Kubernetes [41], due to the health checks performed af
container is created [42].

This inherent delay would not be practical for th
scenario of this work, which necessitates minimal p
latency to support real-time computation of IoT data
FaaS frameworks offer alternative approaches to mi
cold start problem [43], involving trade-offs between
response time, resource utilisation, and process isol
widely adopted strategy aims to keep functions warm
specific criteria [44] so that there will always be at
function instance immediately available to serve an
request. OpenFaas’ solution to the cold start issue co
creating a persistent container for each type of func
ing deployment. Notably, this long-lived container ca
multiple invocation requests by leveraging process-le
tion [42] and an initialisation process known as the W
which actively monitors the invocations a function rec
launches these processes as needed.

OpenFaas Watchdog. In addition to the Microservic
mentation discussed earlier, to carry out the performa
uation of this work, two more variants of the Real-t
cessing subsystem were developed based on differe
FaaS templates. These templates address the above c
problem by employing two alternative versions of t
Faas Watchdog process. The first version is built on
sic watchdog template, while the second version utilis
watchdog template [45].

The classic watchdog provides an unmanaged an
interface between a given function and the outside wo
responsible for marshalling an HTTP request, accept
OpenFaaS API Gateway [21], and invoking the reques
tion by creating a new process. Every function embed
nary and uses it as its entry point. Once a new process
the Watchdog passes in the HTTP request via stdin and
HTTP response via stdout. Because the above abstrac
place, the process does not need to know anything
web or HTTP. Therefore, the classic watchdog simp
development of the application and provides the high
of portability. However, it does have the drawback o
one process per request that, as we will demonstrate l
lead to poor performance.

Conversely, the of-watchdog enables an HTT
whereby a process is first created and reused repea
tween multiple function invocations to offset the abov
of forking. However, this introduces the additional co
of writing functions that have to be HTTP-aware, i.e
parse data from the received HTTP request and return
in the HTTP response. In effect, this approach embe
application within a container using Flask like the Mic
implementation discussed earlier. To support our exp
and comparative evaluation, the software components’
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er thread.

iderations. As discussed earlier in the paper, the
ced by the IoT Ecosystem were encoded in JSON
nsmitted over the network via HTTP/REST. This
o the two implementations based on serverless
ardless of the chosen OpenFaaS Watchdog tem-
er, the endpoints of the allocated components

ere not directly exposed to the rest of the sys-
he execution of the data processing workflow was
gh interaction with the (ingress) Data Collection
e respective endpoint created on the OpenFaaS

aaS application can be defined through a YAML
nes the composition of its various functions
ractions. When functions are defined accord-
the classic watchdog or the of-watchdog tem-
containers are automatically created. Unlike the
se descriptor used in the Microservice implemen-
loyment workflow did not require the specifica-
el container details such as the Dockerfile defini-

anagement and run-time instantiation. OpenFaaS
transparent creation of the functions by automat-
ment and interconnection of the required Docker
the underlying Docker Swarm.

Experiments
stem includes the software tools supporting the
nd the execution of the experiments performed
luation targeted by this paper, i.e., the Metrics
the Experiment Manager components described

Collector
onent collected metrics related to the perfor-
tbed resource utilisation of the Real-time Edge

bsystem during the execution of a given experi-
sely developed Python application, deployed on

ter, aggregated values collected from three dif-
: i) physical resource utilisation and containers-
s are gathered via querying an instance of the
pen source tool [46]; ii) metrics values related
n time and the request-reply time of the process-

ns are collected from the Docker Swarm and the
files, as well as from the log files of the Software
finally, iii) additional metrics associated with the
of the serverless functions were gathered from
enFaaS monitoring system.

ent Manager
stem facilitated the setup and execution of di-

ents in this work by automating the activation of
stances of the necessary software components on
e process involved two steps, i.e., generating the
nfiguration settings for a specific experimental

on the designated hosts of the testbed.
Specifically, the Experiment Manager was respon

the execution of the following tasks: i) activation
ticular implementation of the Real-time Edge Proce
the testbed; ii) instantiation of the IoT Ecosystem to
streams of data according to the experiment’s setting
ployment of an instance of the Metric Collector so
ous metrics related to the system’s performance were
This subsystem [47] was implemented in Python, and
experiment to be carried out, it performed the activati
above components by interacting with the relevant ho
testbed over SSH via the Fabric library [48].

5. Evaluation Approach

This section presents the methodology whereby
experiments were devised to answer the initial resea
tion of this paper—the viability of Microservice and
chitectures for building edge applications that perform
IoT analytics tasks.

A typical stream of data produced by an IoT dom
needs to be processed in real-time is a continuous flow
or messages from devices that capture various aspec
physical world, such as temperature, humidity, moti
tion, etc. These data streams need to be processed qu
efficiently to enable real-time decision-making, anal
actions based on the insights derived from the data
scale of the streams depends on the type and number o
and the size and frequency of the messages.

To investigate how Microservice and FaaS arch
deal with the above IoT scenario, a comprehensive per
evaluation was carried out using the different implem
of the Real-time Edge Processing subsystem presente
Experiments that reproduced the type of data and the sc
acterising typical IoT systems [49] were devised and
on our testbed to collect and analyse measurements
two performance indicators, selected according to th
target of our analysis. As mentioned, this work is c
exploring resource allocation and performance of user
analytics from a provider perspective. Therefore, bas
study already performed in paper [50] and the met
in our previous work [13], the performance indicator
more relevant for this work were the end-to-end proce
tency of the analytics and the related edge resource u
The first performance indicator measures the ability of
time Edge Processing to execute computations with
processing latency, which motivates the choice of us
resources for the computation but also brings about a
constraints on the resource infrastructure. Hence, th
performance indicator measures the amount of edge
required to perform real-time computation.

The evaluation approach used in our previous pape
cussed solely on the effects that transport and encodi
have on Massive Real-time IoT Data systems, leavin
analysis of the impact of the data processing tasks
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paper, we extend that investigation and focus specifically on
the resource capabilities that edge nodes should have to pro-
cess IoT data
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streams in real-time via Microservice or FaaS
o facilitate the measurement and direct compar-

source utilisation and end-to-end processing la-
technologies, alternative implementations of the
e Processing—where all of the processing logic
d into a single subsystem—have been considered.
can mitigate the run-time complexities of multi-
nfigurations and setup and the associated inter-
eractions; moreover, it has provided valuable in-
behaviour of microservices and serverless func-

r possible utilisation as the building blocks for
analytics running at the edge.
iments of our performance evaluation, based on
proach, were explicitly devised to model the
s of the type of devices and volume of generated
lternative IoT scenarios, which will be referred to
and Scenario B. To reproduce in our testbed dif-
ings related to these scenarios, bespoke instances
system needed to be adequately configured and
ring the execution of the experiments. In partic-
guration allowed the selection of the number of
Devices (d) and Software IoT Gateways (g), as

(rm) at which each IoT device generated the IoT
1 shows that Scenario A included a single Soft-
way and 1000 Software IoT Devices; Scenario B
ten Software IoT Gateways and 10000 Software

s of data were modelled as sensor measurements
d in JSON format and including the fields Sen-
, Type, Unit, and Value. When an experiment
the software sensors continuously generated IoT
en rate rm. Different experiments considered
s of rm to model an increasing cumulative num-
asurements generated per second. To mitigate

ansmission overhead of HTTP/REST, those data
on the gateway(s) of the IoT Ecosystem—the IoT
yer—and a single batch of a given size (bs) was
al-time Edge Processing during each workflow’s
his allowed us to evaluate how the frequency of
s invocation and the size of the elements to be
cted the performance indicators.

IoT Scenario A IoT Scenario B
Gateways (g) 1 10
Devices (d) 1000 10000

ate (rm) 4, 12, 25, 25 4, 12, 25, 25
h size (bs) 4000, 16000,

32000, 64000
4000, 16000,
32000, 64000

s’ duration 120 minutes 120 minutes

ummary of the IoT settings used for the experiments

shows, the rate rm varied during the experiments
− 25 msgs/sec, while the size of the batches

among the values {4000, 16000, 32000, 64000}.

tiple invocations occurred during the 120-minute tim
an experiment. Averaged values of the end-to-end
ing latency and resource utilisation metrics were c
throughout each experiment considering multiple exec
the same workflow on different input data.

The IoT scenarios presented in Table 1 serve as
models of real-life use cases that are highly relevant i
IoT landscape. In particular, Scenario A reproduces
generation rate that may occur in a Smart Factory. In s
ting, a range of IoT devices and sensors are strategical
throughout the production floor to capture data relate
chine performance, inventory levels, and product qua
generated data, consisting of thousands of events pe
can provide valuable insights for optimising produc
cesses, minimising downtime, and ensuring a secure
environment. On the other hand, the settings of Scenar
resemble those found in a Smart City environment, w
merous sensors are deployed across an urban area to co
on air quality, traffic flow, noise levels, and energy c
tion. These sensors continuously generate a significan
of events per second, with higher frequency than Sc
delivering real-time information essential for urban
resource management, and environmental monitoring

Further details on the performance indicators utilis
the experiments and how they were calculated are des
the remainder of this section before some consideratio
auto-scaling features are presented.

5.1. End-to-end processing latency

The effective execution of real-time IoT analytics
minimum latency between data generation, invocati
processing workflow, and availability of the results.
the considered experiments, these aspects were eval
analysing the metrics of type (ii) and (iii) discussed i
4.3.1. These include the execution time tex and the
reply time trr associated with a single invocation of
time Edge Processing workflow. Specifically, tex is t
time required to execute the code that performs the
processing tasks; trr indicates the overall latency dete
Sofware IoT Gateway, i.e., the time elapsed between
mission of a processing request to the edge domain an
ceipt of the related results. While the execution time
cluded within trr, the value trr − tex indicates any over
to the invocation handling, such as process forking,
tional delay introduced by any intermediate compone
system (e.g., the OpenFaaS API Gateway, the Watch
and the network communication time.

5.2. Resource Utilisation

The deployment of processing functions in close p
to the IoT devices can reduce the end-to-end processin
thanks to a smaller network communication latency.
the amount of edge resources available for the exe
those applications is often limited—determining the
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utilisation associated with either the Microservice or the FaaS
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aluate the usability of edge nodes. This perfor-
or was measured during the experiments via col-
l parameters associated with the metrics of types
cussed in Section 4.3.1. These include cpu% and
pu% represents the average percentage of system
n associated with the execution of the process-
during the lifetime of an experiment; mem indi-

ge amount of RAM (in megabytes) utilised by the
lication throughout an experiment. While there
tions on the memory amount that both functions
ices could utilise, CPU limits were implemented
xecution of each of their individual instances on

o facilitate the analysis of the results.

ling
ct of Microservice and FaaS architectures, and of
ntainerisation, is the ability of these technologies
e number of instances of a service component (or

and dynamically. Serverless FaaS frameworks
vide auto-scaling capabilities to their users. In
r instance, when the number of invocations of a

exceeds a specified threshold (of five requests
default), an additional (configurable) number of

at function is spawned automatically by the API
a maximum value (20 by default) is reached.
service architectural style was first described by

ler [52] as “an approach to developing a single
a suite of small services, each running in its own
mmunicating with lightweight mechanisms, of-

esource API”. This architecture allows individual
to scale out, but this mechanism is not always

matically. Some frameworks, such as the Flask
rk [35], only deal with the development aspects
rvices. The microservice run-time management
y container orchestration engines that do not al-
uto-scaling features. The Docker Swarm engine,
oes provide mechanisms for scaling the number
ntainers at runtime; however, this is not done au-
d has to be triggered by an infrastructure admin-
ia the command line interface [53]. Auto-scaling
built within those frameworks upon the existing
g functionalities but this would require develop-
ating additional features in their vanilla versions.
er orchestration engines have built-in container
apabilities that can be applied to microservices.
require external components and APIs to be con-
nched separately, such as in Kubernetes [54] and
].
eteness, the performance evaluation that will be
ection 6 covers all the above-mentioned scaling

Specifically, it will investigate a serverless sce-
erent auto-scaling capabilities provided by Open-
lts will be compared with experiments performed

ces deployed via statically pre-allocated contain-
ld be scaled manually) and via a Docker Swarm

5.4. Frameworks Resource Utilisation
To ensure a fair comparison of the frameworks ut

the deployment of the two versions of the Real-time E
cessing application in the experimentation environmen
analysis of the resource utilisation associated with th
tion of the main OpenFaaS components was compared
resource required for the execution of the Docker Sw
tainer orchestration engine. This comparison is also in
the performance evaluation presented in the next secti

6. Performance Evaluation Results

This section presents the results of the experim
cuted on the testbed to evaluate the performance of
time Edge Processing subsystem, according to the met
discussed earlier. The two FaaS implementations pre
Section 4.2.2, based on the classic watchdog and of-w
templates, were compared to the Microservice implem
discussed in Section 4.2.1. To simplify the description
sults, in the remainder of the paper, these implementa
be referred to as Classic, Flask, Micro and Micro_s (
vices with auto-scaling), respectively.

The average execution time (tex) and the Cumula
tribution Function (CDF) of the request-reply time (
utilised for quantifying the end-to-end processing
whereas the CPU utilisation and Memory utilisation
the graphs are related to the resource utilisation per
indicator of the edge nodes. All the graphs, whose da
have been calculated as the average of multiple values,
associated 95% confidence interval as a shadowed ar
ever, it should be noted that such intervals are minima
of the graphs and, therefore, may not be visible.

Auto-scaling considerations. Our experimentation se
on the auto-scaling capabilities natively provided by O
To ensure a comprehensive evaluation covering vari
ing scenarios, we also developed an auto-scaler comp
ployed on the testbed during some of the experim
Docker Swarm to provide auto-scaling capabilities fo
croservices. This auto-scaler implements a feedback
monitors CPU core utilisation. Suppose a container u
of the assigned CPU core exceeds a pre-configured
(set at 85% in our tests) for more than one minute. In
the auto-scaler triggers a scaling-out action by instant
ditional containers of the respective microservice (in
we used four in addition to the existing one).

Therefore, the microservice evaluation consisted o
of experiments based on static container allocation (M
another group executed via Docker Swarm and the ab
scaler component (Micro_s). The auto-scaling was o
gered in OpenFaaS under the settings of IoT Scenar
volving the Flask and the experiments with bs = 4
bs = 16000. With identical IoT settings and functio
tion rate, the Classic did not trigger the auto-scaling
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Figure 3: Execution Time (tex) of the Real-time Edge Processing in the considered IoT settings

invocations reached a timeout before receiving a
ssed later. The scaling-out action was triggered
ervices under the settings of IoT Scenario B with
s = 32000 and bs = 64000. Comparing the effec-
rious auto-scaling mechanisms is a well-known
[56] that we deem out of the main scope of this
er, it represents an interesting topic we plan to
tential future work.

d processing latency

section, Figure 3 presents the measured execution
ious implementations of the Real-time Edge Pro-
as the associated distribution of the request-reply
d in Figure 4 and Figure 5.

on Time
s of Figure 3 show on the y-axis the execution
experiments related to IoT Scenario A and IoT

spectively. The different sizes of the batches of
bs are reported on the x-axis. It can be observed
with the size of the data processed during each
ooking at IoT Scenario A, this growth is faster

when compared to the Flask (Figure 3a). This
be explained by considering how a function in-
dled. The Classic is prone to an additional over-

w process is forked per invocation; conversely,
evised to offset this latency by reusing the same

different invocations. Even though tex does not
verhead directly, the collected values highlight a
ance slowdown—the actual processing task took
the Classic because a given percentage of CPU

used for the handling of such process allocation.
measured for the Classic became on average 25%
e tex of the Micro.
Flask is considered, its behaviour in terms of tex

at of the Micro. This result is expected as they
on similar software components. Moreover, the

e of-watchdog in the function implementation did

not impact the tex in this experimental scenario. The
associated with a Flask invocation was minimal bec
like the Classic, the same process could be reused be
dependent requests and no additional forking operatio
be executed.

A different behaviour of the processing applicatio
noticed in the experiments of IoT Scenario B. In this c
current function invocations significantly impacted th
mance of the Classic. The overhead due to the proc
ing was too high and required considerable CPU tim
prevented the Classic from working as expected, an
ceived invocations consistently reached a timeout in a
ferent experiments. Therefore, the measured tex values
meaningful and have not been reported in Figure 3b.

Under the same IoT settings of Scenario B, the
Flask was, on average, 15% higher than the one of th
Since multiple parallel invocations were submitted to
cessing applications during these experiments, the a
CPU time demanded by the presence of the of-watc
came more substantial. This had a higher impact on th
the previous IoT scenario. The difference between
the Flask and the tex of the Micro is 10% higher than
average difference measured during the experiments of
nario A. The results related to this IoT scenario are s
the previous one, even though the OpenFaaS Gateway
the autoscale for the Flask when bs = 4000 and bs

Therefore, the tex measured for each invocation does
to be related to the total number of active function inst
cause these are spread by Docker Swarm on the availa
of the cloudlet. Likewise, the tex of the Micro_s did no
with the number of (container) instances allocated fo
croservice when auto-scaling was triggered and, as a
is not shown in the graphs.

6.1.2. Request-reply time
Figures 4 and 5 show the CDF of the trr for the tw

ered IoT scenarios. As explained, during the experi
lated to IoT Scenario B, the Classic failed to achieve

11



Journal Pre-proof

0 10
Request/R

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

classic flask micro

(a) Buffer S

classic flask micro classic flask micro

3000
 (msec)

classic flask micro

msgs

0 200
Request/

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

(a) Buffer S

6000
e (msec)

micro_s

msgs

processing; in
tently reached
the measured

As seen in
both the Flask
ier and faster
bs = 4000 (see
distributed aro
On the same
indicates a slo
value of 1200
bs, due to the
ted and proce
graphs of Figu
both the Flask
measured. Ho
distribution of
the invocation
the of-watchd
Classic, with t
forked for eac

The CDFs
are presented i
could not cope
additional late
quests submitt

ights that
he Flask
s slightly
ve the trr

ed by the
is due to
such, the
l, and the
_s imple-
ively low
he one of

6000. It
nce than

e the cre-
of 1500

ion repli-
ing effec-
ly 1/10th.

here the
ance im-
250 ms.
4000 are
e rate of
ger auto-
Jo
ur

na
l P

re
-p

ro
of00 2000 3000

esponse Time (msec)

ize: 4000 msgs

0 1000 2000 3000
Request/Response Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

(b) Buffer Size: 16000 msgs

0 1000 2000 3000
Request/Response Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

(c) Buffer Size: 32000 msgs

0 1000 2000
Request/Response Time

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

(d) Buffer Size: 64000

Figure 4: CDF of Request-reply Time (trr) in IoT Scenario A (1 gateway, 1000 sensors)
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Figure 5: CDF of Request-reply Time (trr) in IoT Scenario B (10 gateways, 10000 sensors)

fact, the associated function invocations consis-
a timeout in all the different experiments. Hence,

trr values have not been represented in Figure 5.
Figure 4, when IoT Scenario A is considered,
and the Micro implementations show a stead-

response time compared to the Classic. With
Figure 4a), the measured trr values are narrowly
und 100 ms for both the Flask and the Micro.
graph, the distribution of values of the Classic
wer and less deterministic trr, with an average
ms. The trr value increases with the buffer size
larger number of IoT messages to be transmit-

ssed during a single invocation. The remaining
re 4 show that the above trend is not critical for
and the Micro, for which comparable trr were

wever, one can notice a slightly slower and wider
values associated with the Flask. This is due to

s routed through the OpenFaaS API Gateway and
og. The same consideration also applies to the
he additional latency due to a new process being
h function invocation.
of the trr for the experiments of IoT Scenario B
n Figure 5. The Classic (not shown in the graphs)
with the parallel function invocations due to the

ncy introduced by the process forking—the re-
ed by the software IoT Gateways reached a time-

out before receiving the expected HTTP reply.
The graph of Figure 5a, related to bs = 4000, highl

the Micro has the best performance in terms of trr. T
shows a similar behaviour, although the measured trr i
more variable. The auto-scaling feature did not impro
in this case, and the overall measured trr is not impact
number of running function instances. We believe this
the small tex of each invocation when bs = 4000. As
available instances were not effectively used in paralle
resulting trr did not change significantly. The Micro
mentation did not exhibit auto-scaling due to the relat
CPU utilisation. Hence, the resulting trr is similar to t
the Micro, and it is not shown in the graph.

Figure 5b shows the CDF of the trr when bs = 1
can be noticed that the Flask exhibits better performa
the Micro. Moreover, the distribution of the trr befor
ation of the additional functions was around the value
ms, but after the instantiation of the additional funct
cas, the trr went down to 150 ms. Hence, the auto-scal
tively reduced the initial trr of a factor of approximate
A similar behaviour can be observed for the Micro_s, w
allocation of additional replicas resulted in a perform
provement, with the measured trr decreasing to about

The CDFs of the trr when bs = 32000 and bs = 6
shown in Figure 5c and Figure 5d, respectively. Th
incoming requests was not as high as required to trig
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Figure 6: Resource Utilisation in IoT Scenario A (1 gateway, 1000 sensors)

nFaaS. As for bs = 4000, both the Micro and the
milar CDFs for the trr, although the latter seems
htly worse than the former. This is again due to
delay introduced by the OpenFaas API Gateway
tchdog. The auto-scaler based on CPU load we
Micro_s did trigger the scale-out during these ex-
ding to a notable improvement of the trr thanks to
n of requests among all the available replicas.
OpenFaaS provides auto-scaling features out-of-
cale-out was not automatically triggered under
tances. Therefore, further investigations may be
entify the best metrics an auto-scaler should use
dditional container or function instances. The ef-
using the number of received requests per second
d CPU load depends on the measurement gener-
the size of the batch processing.

Utilisation

section, Figure 6 shows the cpu% and mem usage
, Flask and Micro implementations of the Real-
ocessing in IoT Scenario A, whereas the same

etrics related to IoT Scenario B are reported on

tilisation
Scenario A is considered in Figure 6a, it can be

e cpu% usage of the Classic is significantly higher
f the other implementations. The highest cpu%
5%) is reached when bs = 4000, and it is almost
an the one measured for the Micro. As bs in-

pu% metric of the Classic decreases; conversely,
% metric increases. When bs = 64000, both im-
consume comparable CPU resources. As seen
rhead related to the process forking for the Clas-

ts the actual processing tasks with small values of
sgs). Therefore, with a higher frequency of func-
, most CPU time is spent on the process forking.

4000, the number of invocations decreases and,

as a result, more time is required for the actual com
therefore, the measured CPU utilisation becomes clo
one of the Micro.

The opposite behaviour can be noticed for the Fl
measured CPU usage increases with the selected si
buffer. This result differs from the one of the Class
related invocation overhead is considerably smaller. T
brings in a decrease of the CPU usage on an averag
with respect to the Classic. However, the Flask CPU
slightly higher than the Micro for a given size of the
input (on average 25% more). Again, this happens b
the overhead associated with the of-watchdog compon

The CPU usage related to IoT Scenario B is de
Figure 7a (on a wider y-range than Figure 6a). Again,
be noted that the Classic failed to achieve the throu
quired to cope with the rate of incoming concurrent req
fact, the Classic used on average around 100% of the C
just to perform process forking. The cpu% usage met
Flask, presented on the same figure, deserves a more
discussion. As mentioned earlier, the auto-scaling
gered during the experiments with bs = 4000 and bs

This is reflected by a higher average CPU utilisation
Micro implementation because this metric is calculat
sum of the CPU utilisation of all the allocated fun
stances of that type.

The graphs show that with bs = 4000 and bs =

the overall Flask CPU utilisation is higher than the o
Micro due to the multiple function instances allocate
the related experiments. Moreover, since the numb
stances changed dynamically during the experiment (
to 20), the metrics’ distribution associated with thos
is bimodal. This is reflected by the larger confidence
shown in the graphs. The number of function instance
change during the experiments performed with bs = 3
bs = 64000, and the cpu% metrics of the Flask and M
plementations are similar.

In the experiment with bs = 4000, the behaviour o
cro and Micro_s is identical. The measured container C
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Figure 7: Resource Utilisation in IoT Scenario B (10 gateways, 10000 sensors)

er exceeded the pre-configured threshold (85%)
gger the auto-scaling. On the other hand, in the
ith bs = 16000, bs = 32000 and bs = 64000,

ic was above that threshold and approx 100%. As
the Micro_s, the number of containers increased
ve at run-time as the auto-scaler was triggered.
d by higher CPU core utilisation than the Micro
etric is calculated as an aggregated value of all
ontainers, and each of the five containers had an

CPU core usage. Like with Flask, the number
anged dynamically during the experiment, lead-
al distribution and the larger confidence intervals
graph.

y Utilisation
e memory utilisation related to IoT Scenario A,
re 6b, indicates that the Classic requires slightly
han the Micro. This is justified by the on-demand
echanism on which the Classic implementation

ch creates and destroys a process during each
ation. Conversely, the Flask uses more memory
. Although those implementations are based on
logies, slightly higher memory consumption was
he Flask due to the of-watchdog component.
ry consumption of the processing applications in
B (Figure 7b) shows that the Classic required a
ount of memory, even though it failed to achieve
roughput (note a wider y-range than Figure 6b).
haviour stems from the overhead of instantiat-
process per function invocation, which resulted
ry resources being used for this task rather than
data computation. Like the CPU utilisation, the
values of memory utilisation of the Flask when
d bs = 16000 is bimodal since it reflects the
ation of function instances during these exper-
efore, in this case, the confidence intervals for
d bs = 16000 are larger than those shown for
d bs = 64000. Moreover, as for the CPU utilisa-

tion, this metric is higher than that of the Micro when b
and bs = 16000, as it represents the sum of the mem
sumed by all the allocated function instances. Simi
Micro_s memory consumption is higher than the Mi
bs = 16000, bs = 32000 and bs = 64000. This is bec
calculated by adding up the memory consumption of i
containers allocated for the microservice after the aut
has been performed.

6.3. Serverless Computing Platform Resource Overhe

This section focuses on analysing the resource utili
lated to the execution of the OpenFaaS platform. The
Figure 8 represent the CPU and Memory utilisation
during the execution of the Flask experiments in the
scenarios under consideration. It is worth noting th
source utilisation of OpenFaaS components, apart from
Gateway, was found to be negligible, and hence, it i
picted in the presented graphs.

The cpu% was mainly affected by the concurrent
received by the API Gateway and the selected bs. Wh
Scenario A, a single software IoT Gateway was up
ning, the resulting CPU utilisation was minimal and,
age, nearly 5 times smaller than the values observed
Scenario B. It can be noticed that, in IoT Scenario A,
utilisation presents a relative maximum when bs = 32
cpu% values of IoT Scenario B show a relative max
bs = 16000. This trend highlights that the number of
invocations per second impacts CPU utilisation more
number of messages sent with each invocation. More
measured value above 30%, reported for IoT Scenario
cates that the execution of the auto-scaling operations
additional CPU resources.

The memory usage, shown in Figure 8b, is barely
by the number of concurrent functions invocations, alth
measured memory requirements for IoT Scenario B ar
higher than the ones related to IoT Scenario A. In
the number of messages bs, sent with each function in
seems to impact the memory usage, although the grow
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Figure 8: Resource Utilisation of the OpenFaaS Gateway in the considered IoT settings (with Flask)

graph is not substantial. Finally, it can be noticed
ry consumption is not strictly related to the ex-
auto-scaling mechanisms; this is different from
d on the cpu% graph of Figure 8a.

of the results

ensive analysis of the results of the previous ex-
iscussed here. Since several tests have been exe-
fferent settings, it may be hard to provide a defini-

er to the initial research question asked in the
, the pros and cons of using microservices and
ctions for real-time IoT analytics at the edge de-
ecific IoT scenario where these technologies are

ssociated volume of the data streams they need to
efore, an overview of what we learned from the
ith regard to the lifecycle, performance and re-

ion of Microservice ad FaaS architectures is pro-

fecycle perspective, building Microservice ap-
olves creating the necessary components using
like Flask, along with the direct engagement of
configuring and deploying the required contain-
ntly, the lifecycle of Microservice applications is
ompared to the FaaS technologies used in this
icated by our prior findings [13], using JSON
ST web interfaces in Flask microservices intro-

ance and resource utilisation overheads. Never-
ared to the FaaS technologies examined in this
valuation, microservices generally exhibited bet-
processing latency and resource utilisation.
tage is noticeable in IoT use cases that gener-
es similar to IoT Scenario A, where microser-

ntly demonstrated the most favourable request-
exhibited the lowest resource utilisation. For

gle instance of a microservice could process a
of data generated by 1000 sensors at a rate of

er second and provide a response to the IoT Gate-
0 milliseconds. Such processing might be ac-

complished on resource-constrained edge nodes, as e
by the CPU utilisation in this scenario, which slightly
20% of a single core, and memory consumption nearin

In contrast to microservices, the lifecycle of Fla
tions does not require the involvement of developer
level tasks associated with container configuration,
and instantiation, as the OpenFaaS framework abstra
aspects. The performance of this technology demonst
bility and consistency throughout the conducted test
to the behaviour observed for microservices. Due to
ity to reuse the same process across separate functio
tions, Flask exhibited acceptable response time and
utilisation during the experiments. Consequently, this
ogy proves suitable for IoT analytics scenarios charact
frequent invocations and varying data batch sizes. Th
end processing latency and resource utilisation indic
Flask were only marginally inferior to those of micros

The advantages of employing Flask functions bec
ticularly evident when very large data streams need t
cessed, such as in the IoT use cases exemplified by Sc
In this scenario, OpenFaaS could dynamically scale th
of function instances on the available resources, respo
specific runtime conditions that impacted the workloa
auto-scaling necessitates additional computational res
effectively improved the end-to-end processing laten
pared to static container allocation.

Specifically, by processing multiple parallel reque
available replicas, Flask was able to achieve a minim
to-end processing latency of 150 ms when handling
requests generated by 10,000 sensors at a rate of 12
per second. This demonstrates a noteworthy imp
over statically allocated microservices, which proved n
times slower under identical conditions. Allocating
function replicas naturally requires additional resour
pared to a single microservice instance. However,
the collected resource utilisation metric, such auto-sc
pabilities required two nearly fully utilised CPU cores
than 1GB of RAM in the above-mentioned IoT settin
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ing with the capabilities offered by typical edge devices. Fur-
thermore, the advantage of this approach stems from the on-
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tion. This can
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on of replicas, eliminating the need for prealloca-
result in more efficient resource utilisation than

llocated microservices, which is paramount from
point.

oservice application with auto-scaling also ex-
e improvement compared to the static version
ce similar to or, in some cases, better than the
Specifically, it achieved a minimum end-to-end

ency of roughly 1/5 of the static version using
tainers. The improvement brought about by the
o-scaler component was notable when handling
sts generated by 10,000 sensors at a rate of 12
ges per second, buffered in batches of 16,000,
,000 measurements. This was achieved thanks

re utilisation as the metric for triggering the scal-
, which proved more effective than the number

quests per second on which the OpenFaaS built-
is based (by default). Comments similar to those
for the Flask also apply to this implementation,
cation of additional containers required further
urces and memory, like in the scenario when up
s were allocated as a result of the auto-scaling
penFaaS.
ic function offers the highest level of abstraction
velopment and deployment lifecycle when com-
and Micro. Similar to Flask, developers are re-
ntainer creation and management concerns, and
gic does not require HTTP awareness. This flex-
or the inclusion of various process types, includ-
shell processes, within a function. However, it

note that this approach introduces a noticeable
monstrated by the experimental results. Conse-
lassic function is not well-suited for processing
mbling IoT Scenario B, as it cannot cope with
volume of generated data. Even in the settings of
, where the data stream is continuous but less de-

experimental results indicate that the Classic im-
chieved acceptable performance only when deal-

frequent invocations and larger batches of mea-

to the other implementations, the Classic ex-
cantly higher end-to-end processing latency and
n while demonstrating slightly less demanding

ation. This is due to the approach this technology
ptimises resource allocation avoiding the instan-
esses for idle functions. Such resource manage-
nadequate in the considered IoT settings, where
ction failed to handle multiple parallel incoming

o the high overhead associated with creating and
rocess per invocation. Since this overhead con-
cant portion of available CPU time and memory,
de that the Classic function is better suited for
re the invocation rate is low, and the amount of
essed per invocation is large.

As Edge Computing aims to reduce the latenc
ated with data transfer dramatically, it represents a v
proach for IoT scenarios requiring latency-sensitive
and computing resources for real-time process au
Lightweight containers and continuous integration w
have been sustaining the rise of modular and scalable
design patterns, such as those based on microservices
tions. Serverless Computing builds on these technolo
on event-driven programming to overcome the limit
IaaS Clouds through a pure pay-per-use model with
scalability [12]. Through an extensive analysis of the
development and deployment lifecycle, as well as of th
mance and resource utilisation of the above technolo
paper attempted to answer the research question: are M
vice and FaaS architectures viable technologies for
edge applications that perform real-time IoT analytics

An analysis was conducted from the perspe
providers leveraging resources distributed across th
Cloud continuum, with the primary goal of identify
approach may enhance the resource utilisation
providers’ infrastructures specifically focusing on the
constrained edge. Microservice applications, built usin
works like Flask, involve direct developer engagemen
figuring and deploying containers. Compared to FaaS
gies, they generally exhibit better end-to-end processin
and resource utilisation, despite the inherent overhe
duced by JSON over HTTP/REST interfaces. We fou
single microservice instance could be deployed on a
constrained edge node and process IoT data streams g
in Scenario A (Smart Factory) in real time.

Serverless functions, deployed via OpenFaaS, c
tively simplify the software development, configuratio
ployment process. The Classic is the simplest appr
abstracts some of the implementation details and deco
external HTTP interface of the function from the pro
forming the computation. However, allocating a sepa
cess per invocation is also very slow, especially in
ence of multiple parallel requests, due to the result
head. Compared to the other implementations, this
showed the highest resource utilisation with the poore
end processing latency; hence, it could still be used on
constrained edge nodes but possibly only in those
characterised by occasional bursts of data.

The Flask exhibited better performance than the
and resource utilisation similar to the Micro, because
ternal process being reused among multiple invocatio
ever, this approach implies a slightly more complica
ware development workflow, as a function needs to
HTTP requests and responses explicitly. During th
iments related to IoT Scenario A, with a single co
stream of data sent to the processing applications,
end-to-end processing latency and resource utilisatio
mance indicators were just slightly worse than the on
Micro. However, when considering parallel data strea
processed, such as in IoT Scenario B (Smart City), O
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es deployed via Docker Swarm in terms of real-
.
_s with custom auto-scaler also proved to be
than the static Micro in the same scenario, thanks
al containers allocated dynamically at run-time

the CPU core utilisation. Additional resources
in both cases to enable the auto-scaling; how-

riments showed that such a mechanism could be
an edge cloudlet with relatively low resource ca-
these additional resources would only be con-

equested by the workload.
e OpenFaaS components and the custom auto-
loped exhibited acceptable resource utilisation—
nly had a minor impact on the CPU resources
the API Gateway, and the resources required

o-scaler on top of Docker Swarm were negligi-
t overhead does not hinder OpenFaaS utilisation

mited edge environments, and the advantages of
elopment, deployment, and effortless scalability
is overhead in some IoT use cases. On the other

ice of the container orchestration engine for the
can determine the availability of built-in auto-
lities and the need to (develop and) deploy addi-
ents.
bove discussion, we can conclude that infrastruc-
providers might use Microservice and FaaS ar-

manage their resource infrastructures and enable
erform real-time IoT analytics at the edge; how-
those technologies should be carefully selected
he features—in terms of number of devices and
generated streams of data—characterising an IoT
approach used by OpenFaaS with Flask func-

ular, represents a promising solution for the ef-
ion of Serverless Computing towards the edge.
onstrated how this technology can ensure a good
een the complexity of the lifecycle versus the
chievable by using a limited number of edge re-
s also to the inherent auto-scaling mechanisms.

e of this paper might be used as the basis for fu-
explores interactions among multiple microser-

ions, and where alternative implementations of
mputing based, for instance, on microVMs [22]
assessed. Further evaluations might be carried
nd how these technologies perform compared to

roach, to uncover what metrics should be used
tion and container auto-scaling consistently and

ade-off between the frequency of the invocation,
data to be processed, and the resource utilisa-

ore, the results obtained could be used for the de-
opment of an energy-aware and resource-efficient
aS Framework—using the full spectrum of re-
computing continuum—to support the demand-
equirements of next-generation IoT applications
e of domains.
the results of this work, further studies can in-

for leveraging third-party providers through a cost
model. The reason is that many new pricing models
emerging in the IaaS landscape, in addition to the o
users are billed according to the CPU and memory s
virtual machines they lease [28]. These cost models
e.g., Pay-As-You-Go, Prepaid, Reserved Instances, A
ing Plan, and Spot Instances, or rely on actual execu
and actual memory consumption, as seen for serverl
tions. Therefore, given the complexity introduced by t
ied models, an exhaustive exploration of this subject
ative for attaining definitive conclusions, and as such,
marked for future investigation.
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Edge Computing harnesses resources close the data sources to reduce end-to-end 
latency and allow real-time process automation
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oservice and Function as a Service (FaaS) support modular and agile software 
gn patterns compared to monolith

xtensive evaluation of the lifecycle, resource utilisation and latency associated to
e two approaches is evaluated

 suitability of these technologies for applications running on edge resource-
trained environments is assessed
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