2,948 research outputs found

    CMC Spheres in the Heisenberg Group

    Get PDF
    We study a family of spheres with constant mean curvature (CMC) in the Riemannian Heisenberg group H1. These spheres are conjectured to be the isoperimetric sets of H1. We prove several results supporting this conjecture. We also focus our attention on the sub-Riemannian limit

    Efficient chemo-enzymatic transformation of animal biomass waste for eco-friendly leather production

    Get PDF
    Enzymatically processed animal biomass derived from treated bovine hides (wet blue scraps) is herein used as building block for the synthesis of a novel biopolymer. An enzymatic hydrolysis process allows to produce water-soluble lower molecular weight proteins (Bio-A), which are then reacted with glycerol and maleic anhydride (MA) in order to obtain a new intermediate (Bio-IA). With Bio-IA in hand, co-polymerization in the presence of acrylic acid is then carried out. Hydrolysed biomass, intermediates and the final biopolymer (Bio-Ac) have been characterized by means of NMR, FTIR and GPC analysis. Bio-Ac shows good performance when used as retanning agent to produce leather. Physical and mechanical properties of the leather treated with Bio-Ac have been compared with acrylic resin retanned leather, showing similar performance. The reported protocol represents an environmental-friendly interesting alternative to traditional petrochemical based retanning agents, commonly used by the leather industry

    Anatomy, Chloroplast Structure and Compartmentation of Enzymes Relative to Photosynthetic Mechanisms in Leaves and Cotyledons of Species in the Tribe Salsoleae (Chenopodiaceae)

    Full text link
    Certain members of the family Chenopodiaceae are the dominant species of the deserts of Central Asia; many of them are succulent halophytes which exhibit C4-type CO2 fixation of the NAD- or NADP-ME (malic enzyme) subgroup. In four C4 species of the tribe Salsoleae, the Salsoloid-type Kranz anatomy in leaves or stems was studied in relation to the diversity in anatomy which was found in cotyledons. Halocharis gossypina, has C4 NAD-ME Salsoloid-type photosynthesis in leaves and C3 photosynthesis in dorsoventral non-Kranz cotyledons; Salsola laricina has C4 NAD-ME Salsoloid-type leaves and C4 NAD-ME Atriplicoid-type cotyledons; Haloxylon persicum, has C4 NADP-ME Salsoloid-type green stems and C3 isopalisade non-Kranz cotyledons; and S. richteri has C4 NADP-ME Salsoloid-type leaves and cotyledons. Immunolocalization studies on Rubisco showed strong labelling in bundle sheath cells of leaves and cotyledons of organs having Kranz anatomy. The C4 pathway enzyme phosphoenolpyruvate carboxylase was localized in mesophyll cells, while the malic enzymes were localized in bundle sheath cells of Kranz-type tissue. Immunolocalization by electron microscopy showed NAD-ME is in mitochondria while NADP-ME is in chloroplasts of bundle sheath cells in the respective C4 types. In some C4 organs, it was apparent that subepidermal cells and water storage cells also contain some chloroplasts which have Rubisco, store starch, and thus perform C3 photosynthesis. In non-Kranz cotyledons of Halocharis gossypina and Haloxylon persicum, Rubisco was found in chloroplasts of both palisade and spongy mesophyll cells with the heaviest labelling in the layers of palisade cells, whereas C4 pathway proteins were low or undetectable. The pattern of starch accumulation correlated with the localization of Rubisco, being highest in the bundle sheath cells and lowest in the mesophyll cells of organs having Kranz anatomy. In NAD-ME-type Kranz organs (leaves and cotyledons of S. laricina and leaves of H. gossypina) the granal index (length of appressed membranes as a percentage of total length of all membranes) of bundle sheath chloroplasts is 1.5 to 2.5 times higher than that of mesophyll chloroplasts. In contrast, in the NADP-ME-type Kranz organs (S. richteri leaves and cotyledons and H. persicum stems) the granal index of mesophyll chloroplasts is 1.5 to 2.2 times that of the bundle sheath chloroplasts. The mechanism of photosynthesis in these species is discussed in relation to structural differences.This work was partly supported by Civilian Research and Development Foundation Grant RB1–264 and NSF Grant IBN-9807916. EV Voznesenskaya would like to thank CIES, Washington DC for a Fulbright Scholar Research Fellowship. We also thank the Electron Microscope Center of Washington State University for use of their facilities and staff assistance

    Biopolymers for a more sustainable leather

    Get PDF
    Content: A novel class of bio-based polymers have been developed within the LIFE BIOPOL European project aiming to replace traditional re-tanning and fat-liquoring products reducing environmental impacts and increasing the safety of leather. The purpose of the project is to enhance the recovery and reuse of different bio-derived by-products from leather and agro-industrial sector to produce eco-friendly and renewable bio-polymers with high re-tanning and fat-liquoring characteristics. The LIFE BIOPOL project aims to make bio-based polymers in order to reduce the following parameters in re-tanning phase: - 20-30% COD, - 50-60% of inorganic salts (Sulphates and Chlorides), - 90% of Cr (III) salts, - 20% of water used in the leather process. Other important goals of the project are: - reduction 70-90% of hazardous and environmental polluting substances normally found in conventional chemicals, - reactivity enhancement of 30-40% of the new biopolymers compared to the current leather - application technology, - reduction of 70-80% of the Product Environmental Footprint of the new biopolymers related to the state of the art. The vegetal biomasses and the tanned hides by-products were pretreated in order to obtain suitable building blocks for the production of bio-based polymers. Several protocols involving polymerization were used in order to achieve the synthesis of the biopolymers, which have been carried out at lab scale. Macromolecular characterization of the biopolymers was performed in order to rationalize the synthetic strategy and practical application of the products giving important parameters such as molecular weight and chemical composition of the new biopolymers. Performances of new bio-based polymers have been inspected and compared with traditional chemicals through application on different types of leather. The benefits of the new products within leather making process were evaluated through chemical analyses of re-tanning and fat-liquoring effluents. The upgrade of the developed chemistry will be performed within a new devised prototype plant specifically designed and built-up for producing the bio-based polymers at industrial scale Take-Away: Production of leather making biopolymers from biomasses and industrial by-products through Life Cycle Designed Processe

    Dzyaloshinskii-Moriya interaction in transport through single molecule transistors

    Full text link
    The Dzyaloshinskii-Moriya interaction is shown to result in a canting of spins in a single molecule transistor. We predict non-linear transport signatures of this effect induced by spin-orbit coupling for the generic case of a molecular dimer. The conductance is calculated using a master equation and is found to exhibit a non-trivial dependence on the magnitude and direction of an external magnetic field. We show how three-terminal transport measurements allow for a determination of the coupling-vector characterizing the Dzyaloshinskii-Moriya interaction. In particular, we show how its orientation, defining the intramolecular spin chirality, can be probed with ferromagnetic electrodes

    Nephrological Complications in Hemoglobinopathies: SITE Good Practice

    Get PDF
    Background. Hemoglobinopathies, among which thalassemic syndromes (transfusion-dependent and non-transfusion dependent thalassemias) and sickle cell disease (SCD), are the most widespread monogenic diseases worldwide. Hemoglobinopathies are endemic and spread-out all-over Italy, as result of internal and external migration flows. Nowadays, the increase therapeutic options associated to the general aging of patients with hemoglobinopathies related to the improvement in clinical management, contribute to the abnormalities in kidney function going from blood and urine test alterations to chronic kidney disease and end stage renal disease. Methods. Here, we carried out a revision of the literature as panel of recognized experts in hemoglobinopathies with the consultancy and the revision of two nephrologists on kidney alteration and kidney disease in patients with TDT, NTDT and SCD. This is part of the action of the Italian society for the study of thalassemia and hemoglobinopties (SITE). The purpose of this “good practice (GP)” is to provide recommendations for follow-up and therapy for the management of kidney alterations in patients with TDT, NTDT and SCD. The literature review covers the period 1.1.2016 to 31.12.2022. In consideration of the rarity of these diseases, the analysis was extended from 5 to 7 years. Moreover, in the absence of relevant scientific papers in the identified time frame, we referred to pivotal or population studies, when available. Finally, in the absence of evidence-based data from prospective and randomized trials, the authors had to refer to expert opinion (expert consensus) for many topics. Results. We generated question and answer boxes to offer a friendly consultation, using color code strategy and focused answers. Conclusions. The present GP will help in improving the clinical management, and the quality of care of patients with hemoglobinopathies

    Charge localization and reentrant superconductivity in a quasi-ballistic InAs nanowire coupled to superconductors

    Full text link
    A semiconductor nanowire with strong spin-orbit coupling in proximity to a superconductor is predicted to display Majorana edge states emerging under a properly oriented magnetic field. The experimental investigation of these exotic states requires assessing the one-dimensional (1D) character of the nanowire and understanding the superconducting proximity effect in the presence of a magnetic field. Here, we explore the quasi-ballistic 1D transport regime of an InAs nanowire with Ta contacts. Fine-tuned by means of local gates, the observed plateaus of approximately quantized conductance hide the presence of a localized electron, giving rise to a lurking Coulomb blockade effect and Kondo physics. When Ta becomes superconducting, this local charge causes an unusual, reentrant magnetic field dependence of the supercurrent, which we ascribe to a 0 - p transition. Our results underline the relevant role of unintentional charge localization in the few-channel regime where helical subbands and Majorana quasi-particles are expected to ariseWe acknowledge financial support from the Agence Nationale de la Recherche (TOPONANO project) and from the EU (ERC grant no. 280043). R.A. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (grant FIS2015-64654-P). R.Ž. acknowledges support from the Slovenian Research Agency (ARRS) under Program P1- 0044 and J1-725
    corecore