72 research outputs found

    Mitochondrial haplogroup U is associated with a reduced risk to develop exfoliation glaucoma in the German population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various lines of evidence demonstrate the involvement of mitochondrial dysfunction in the pathogenesis of glaucoma. Therefore, mitochondrial DNA is a promising candidate for genetic susceptibility studies on glaucoma. To test the hypothesis that mitochondrial haplogroups influence the risk to develop glaucoma, we genotyped 12 single-nucleotide polymorphisms that define the European mitochondrial DNA haplogroups in healthy controls and two German patient cohorts with either exfoliation glaucoma or the normal tension subgroup of primary open angle glaucoma.</p> <p>Results</p> <p>Mitochondrial haplogroup U was significantly under-represented in patients with exfoliation glaucoma (8.3% compared with 18.9% in controls; p = 0.004).</p> <p>Conclusions</p> <p>People with haplogroup U have a lower risk to develop exfoliation glaucoma. Our results substantiate the suggestion that mitochondrial alterations have an impact on the etiology of glaucoma.</p

    GPFrontend and GPGraphics: graphical analysis tools for genetic association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most software packages for whole genome association studies are non-graphical, purely text based programs originally designed to run with UNIX-like operating systems. Graphical output is often not intended or supposed to be performed with other command line tools, e.g. gnuplot.</p> <p>Results</p> <p>Using the Microsoft .NET 2.0 platform and Visual Studio 2005, we have created a graphical software package to analyze data from microarray whole genome association studies, both for a DNA-pooling based approach as well as regular single sample data. Part of this package was made to integrate with GenePool 0.8.2, a previously existing software suite for GNU/Linux systems, which we have modified to run in a Microsoft Windows environment. Further modifications cause it to generate some additional data. This enables GenePool to interact with the .NET parts created by us. The programs we developed are GPFrontend, a graphical user interface and frontend to use GenePool and create metadata files for it, and GPGraphics, a program to further analyze and graphically evaluate output of different WGA analysis programs, among them also GenePool.</p> <p>Conclusions</p> <p>Our programs enable regular MS Windows users without much experience in bioinformatics to easily visualize whole genome data from a variety of sources.</p

    Identification of the variant Ala335Val of MED25 as responsible for CMT2B2: molecular data, functional studies of the SH3 recognition motif and correlation between wild-type MED25 and PMP22 RNA levels in CMT1A animal models

    Get PDF
    Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous disorder. All mendelian patterns of inheritance have been described. We identified a homozygous p.A335V mutation in the MED25 gene in an extended Costa Rican family with autosomal recessively inherited Charcot-Marie-Tooth neuropathy linked to the CMT2B2 locus in chromosome 19q13.3. MED25, also known as ARC92 and ACID1, is a subunit of the human activator-recruited cofactor (ARC), a family of large transcriptional coactivator complexes related to the yeast Mediator. MED25 was identified by virtue of functional association with the activator domains of multiple cellular and viral transcriptional activators. Its exact physiological function in transcriptional regulation remains obscure. The CMT2B2-associated missense amino acid substitution p.A335V is located in a proline-rich region with high affinity for SH3 domains of the Abelson type. The mutation causes a decrease in binding specificity leading to the recognition of a broader range of SH3 domain proteins. Furthermore, Med25 is coordinately expressed with Pmp22 gene dosage and expression in transgenic mice and rats. These results suggest a potential role of this protein in the molecular etiology of CMT2B2 and suggest a potential, more general role of MED25 in gene dosage sensitive peripheral neuropathy pathogenesis

    Evaluation of nine candidate genes in patients with normal tension glaucoma: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal tension glaucoma is a major subtype of glaucoma, associated with intraocular pressures that are within the statistically normal range of the population. Monogenic forms following classical inheritance patterns are rare in this glaucoma subtype. Instead, multigenic inheritance is proposed for the majority of cases. The present study tested common sequence variants in candidate genes for association with normal tension glaucoma in the German population.</p> <p>Methods</p> <p>Ninety-eight SNPs were selected to tag the common genetic variation in nine genes, namely OPTN (optineurin), RDX (radixin), SNX16 (sorting nexin 16), OPA1 (optic atrophy 1), MFN1 (mitofusin 1), MFN2 (mitofusin 2), PARL (presenilin associated, rhomboid-like), SOD2 (superoxide dismutase 2, mitochondrial) and CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1). These SNPs were genotyped in 285 cases and 282 fully evaluated matched controls. Statistical analyses comprised single polymorphism association as well as haplogroup based association testing.</p> <p>Results</p> <p>Results suggested that genetic variation in five of the candidate genes (RDX, SNX16, OPA1, SOD2 and CYP1B1) is unlikely to confer major risk to develop normal tension glaucoma in the German population. In contrast, we observed a trend towards association of single SNPs in OPTN, MFN1, MFN2 and PARL. The SNPs of OPTN, MFN2 and PARL were further analysed by multimarker haplotype-based association testing. We identified a risk haplotype being more frequent in patients and a vice versa situation for the complementary protective haplotype in each of the three genes.</p> <p>Conclusion</p> <p>Common variants of OPTN, PARL, MFN1 and MFN2 should be analysed in other cohorts to confirm their involvement in normal tension glaucoma.</p

    Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci

    Get PDF
    Glaucoma, a leading cause of irreversible blindness, is a highly heritable human disease. Previous genome-wide association studies have identified over 100 loci for the most common form, primary open-angle glaucoma. Two key glaucoma-associated traits also show high heritability: intraocular pressure and optic nerve head excavation damage quantified as the vertical cup-to-disc ratio. Here, since much of glaucoma heritability remains unexplained, we conducted a large-scale multitrait genome-wide association study in participants of European ancestry combining primary open-angle glaucoma and its two associated traits (total sample size over 600,000) to substantially improve genetic discovery power (263 loci). We further increased our power by then employing a multiancestry approach, which increased the number of independent risk loci to 312, with the vast majority replicating in a large independent cohort from 23andMe, Inc. (total sample size over 2.8 million; 296 loci replicated at P < 0.05, 240 after Bonferroni correction). Leveraging multiomics datasets, we identified many potential druggable genes, including neuro-protection targets likely to act via the optic nerve, a key advance for glaucoma because all existing drugs only target intraocular pressure. We further used Mendelian randomization and genetic correlation-based approaches to identify novel links to other complex traits, including immune-related diseases such as multiple sclerosis and systemic lupus erythematosus

    Prevalence of FOXC1 Variants in Individuals With a Suspected Diagnosis of Primary Congenital Glaucoma

    Get PDF
    © 2019 American Medical Association. Reproduced in accordance with the publisher's Public Access policy. This author accepted manuscript is made available following 12 month embargo from date of publication (January 2019) in accordance with the publisher’s archiving policyImportance Both primary and secondary forms of childhood glaucoma have many distinct causative mechanisms, and in many cases a cause is not immediately clear. The broad phenotypic spectrum of secondary glaucoma, particularly in individuals with variants in FOXC1 or PITX2 genes associated with Axenfeld-Rieger syndrome, makes it more difficult to diagnose patients with milder phenotypes. These cases are occasionally classified and managed as primary congenital glaucoma. Objective To investigate the prevalence of FOXC1 variants in participants with a suspected diagnosis of primary congenital glaucoma. Design, Setting, and Participants Australian and Italian cohorts were recruited from January 1, 2007, through March 1, 2016. Australian individuals were recruited through the Australian and New Zealand Registry of Advanced Glaucoma and Italian individuals through the Genetic and Ophthalmology Unit of l’Azienda Socio–Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda in Milan, Italy. We performed exome sequencing, in combination with Sanger sequencing and multiplex ligation-dependent probe amplification, to detect variants of FOXC1 in individuals with a suspected diagnosis of primary congenital glaucoma established by their treating specialist. Data analysis was completed from June 2015 to November 2017. Main Outcome and Measures Identification of single-nucleotide and copy number variants in FOXC1, along with phenotypic characterization of the individuals who carried them. Results A total of 131 individuals with a suspected diagnosis of primary congenital glaucoma were included. The mean (SD) age at recruitment in the Australian cohort was 24.3 (18.1) years; 37 of 84 Australian participants (44.0%) were female, and 71 of 84 (84.5%) were of European ancestry. The mean (SD) age at recruitment was 22.5 (18.4) years in the Italian cohort; 21 of 47 Italian participants (44.7%) were female, and 45 of 47 (95.7%) were of European ancestry. We observed rare, predicted deleterious FOXC1 variants in 8 of 131 participants (6.1%), or 8 of 166 participants (4.8%) when including those explained by variants in CYP1B1. On reexamination or reinvestigation, all of these individuals had at least 1 detectable ocular and/or systemic feature associated with Axenfeld-Rieger syndrome. Conclusions and Relevance These data highlight the genetic and phenotypic heterogeneity of childhood glaucoma and support the use of gene panels incorporating FOXC1 as a diagnostic aid, especially because clinical features of Axenfeld-Rieger syndrome can be subtle. Further replication of these results will be needed to support the future use of such panels

    Common genetic determinants of intraocular pressure and primary open-angle Glaucoma

    Get PDF
    10.1371/journal.pgen.1002611PLoS Genetics85

    Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression

    Get PDF
    Glaucoma, a disease characterized by progressive optic nerve degeneration, can be prevented through timely diagnosis and treatment. We characterize optic nerve photographs of 67,040 UK Biobank participants and use a multitrait genetic model to identify risk loci for glaucoma. A glaucoma polygenic risk score (PRS) enables effective risk stratification in unselected glaucoma cases and modifies penetrance of the MYOC variant encoding p.Gln368Ter, the most common glaucoma-associated myocilin variant. In the unselected glaucoma population, individuals in the top PRS decile reach an absolute risk for glaucoma 10 years earlier than the bottom decile and are at 15-fold increased risk of developing advanced glaucoma (top 10% versus remaining 90%, odds ratio = 4.20). The PRS predicts glaucoma progression in prospectively monitored, early manifest glaucoma cases (P = 0.004) and surgical intervention in advanced disease (P = 3.6 × 10). This glaucoma PRS will facilitate the development of a personalized approach for earlier treatment of high-risk individuals, with less intensive monitoring and treatment being possible for lower-risk groups

    Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility

    Get PDF
    Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with kno

    Angiopoietin-1 is required for Schlemm’s canal development in mice and humans

    Get PDF
    Made available in accordance with publisher's policyPrimary congenital glaucoma (PCG) is a leading cause of blindness in children worldwide and is caused by developmental defects in 2 aqueous humor outflow structures, Schlemm’s canal (SC) and the trabecular meshwork. We previously identified loss-of-function mutations in the angiopoietin (ANGPT) receptor TEK in families with PCG and showed that ANGPT/TEK signaling is essential for SC development. Here, we describe roles for the major ANGPT ligands in the development of the aqueous outflow pathway. We determined that ANGPT1 is essential for SC development, and that Angpt1-knockout mice form a severely hypomorphic canal with elevated intraocular pressure. By contrast, ANGPT2 was dispensable, although mice deficient in both Angpt1 and Angpt2 completely lacked SC, indicating that ANGPT2 compensates for the loss of ANGPT1. In addition, we identified 3 human subjects with rare ANGPT1 variants within an international cohort of 284 PCG patients. Loss of function in 2 of the 3 patient alleles was observed by functional analysis of ANGPT1 variants in a combined in silico, in vitro, and in vivo approach, supporting a causative role for ANGPT1 in disease. By linking ANGPT1 with PCG, these results highlight the importance of ANGPT/TEK signaling in glaucoma pathogenesis and identify a candidate target for therapeutic development
    corecore