65 research outputs found

    Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins

    Get PDF
    Small nuclear ribonucleoproteins (snRNPs) are core components of the spliceosome. The U1, U2, U4, and U5 snRNPs each contain a common set of seven Sm proteins. Three of these Sm proteins are posttranslationally modified to contain symmetric dimethylarginine (sDMA) residues within their C-terminal tails. However, the precise function of this modification in the snRNP biogenesis pathway is unclear. Several lines of evidence suggest that the methyltransferase protein arginine methyltransferase 5 (PRMT5) is responsible for sDMA modification of Sm proteins. We found that in human cells, PRMT5 and a newly discovered type II methyltransferase, PRMT7, are each required for Sm protein sDMA modification. Furthermore, we show that the two enzymes function nonredundantly in Sm protein methylation. Lastly, we provide in vivo evidence demonstrating that Sm protein sDMA modification is required for snRNP biogenesis in human cells

    Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes

    Get PDF
    The identification of interaction partners in protein complexes is a major goal in cell biology. Here we present a reliable affinity purification strategy to identify specific interactors that combines quantitative SILAC-based mass spectrometry with characterization of common contaminants binding to affinity matrices (bead proteomes). This strategy can be applied to affinity purification of either tagged fusion protein complexes or endogenous protein complexes, illustrated here using the well-characterized SMN complex as a model. GFP is used as the tag of choice because it shows minimal nonspecific binding to mammalian cell proteins, can be quantitatively depleted from cell extracts, and allows the integration of biochemical protein interaction data with in vivo measurements using fluorescence microscopy. Proteins binding nonspecifically to the most commonly used affinity matrices were determined using quantitative mass spectrometry, revealing important differences that affect experimental design. These data provide a specificity filter to distinguish specific protein binding partners in both quantitative and nonquantitative pull-down and immunoprecipitation experiments

    Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species

    Get PDF
    The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved to an average 16-fold mean coverage by next-generation DNA sequencing technologies. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described thus providing an opportunity for comparison with the completed genomes of pathogenic Leishmania species. A high synteny was observed between all sequenced Leishmania species. A limited number of chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic to L. major. Globally, >90% of the L. tarentolae gene content was shared with the other Leishmania species. We identified 95 predicted coding sequences unique to L. tarentolae and 250 genes that were absent from L. tarentolae. Interestingly, many of the latter genes were expressed in the intracellular amastigote stage of pathogenic species. In addition, genes coding for products involved in antioxidant defence or participating in vesicular-mediated protein transport were underrepresented in L. tarentolae. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the zinc metallo-peptidase surface glycoprotein GP63 and the promastigote surface antigen PSA31C. Overall, L. tarentolae's gene content appears better adapted to the promastigote insect stage rather than the amastigote mammalian stage

    A role for arginine methylation in DNA repair /

    No full text
    Arginine methylation is a post-translational modification occurring in higher eukaryotes that results in the addition of one or two methyl group on the nitrogen in the side chain of arginines. The enzymes responsible for protein arginine methylation have been classified in three groups. Type I enzymes promote the formation of both NG-monomethylated and asymmetric o-NG,NG-dimethylated arginines (aDMA). Type II enzymes catalyze the formation of monomethylated and symmetrical o-N G,N'G-dimethylated arginines (sDMA). The type III enzyme found in yeast catalyzes the monomethylation of the delta-guanidino nitrogen atom of the arginine residue. Although some abundant proteins have been described as being substrates for arginine methyltransferases for some time, there are still few known proteins to bear this modification. The primary goal of the work presented in this thesis was to identify new arginine methylated proteins and functionally characterize the roles of arginine methylation in new cellular processes. First, we generated four arginine methyl-specific antibodies: ASYM24 and ASYM25 are specific for aDMA whereas SYM10 and SYM11 recognize sDMA. Cell extracts were used to purify the protein complexes recognized by each of the four antibodies and the proteins were identified by microcapillary reverse-phase liquid chromatography coupled on line with electrospray ionization tandem mass spectrometry (LC/MS/MS). The analysis of 2 tandem mass spectra for each methyl-specific antibody resulted in the identification of 247 proteins, of which 197 are putatively arginine methylated.The DNA repair MRE11/RAD50/NBS1 (MRN) complex was purified using one of the aDMA specific antibody. Since a role of protein arginine methylation in DNA damage checkpoint control and DNA repair had not been previously reported we chose to investigate the consequence of MRE11 methylation in DNA damage. Our results show that the MRE11 checkpoint protein is arginine methylated as determined by mass spectrometry and methylarginine-specific antibodies. The glycine-arginine rich (GAR) domain of MRE11 was specifically methylated by protein arginine methyltransferase 1 (PRMT1). Mutation of the arginines within MRE11 GAR domain severely impaired the exonuclease activity of MRE11. Cells treated with methyltransferase inhibitors displayed a DNA damage-resistant DNA synthesis phenotype and prevented the re-localization of the MRN complex to sites of DNA damage. Downregulation of PRMT1 with small interfering RNAs (siRNA) also yielded a damage-resistant DNA synthesis phenotype that was rescued with the methylated MRE11 complex. Taken together, the work presented in this thesis allowed the identification of many new potentially arginine methylated proteins and demonstrated a novel role for arginine methylation in the regulation of DNA repair enzymes and of the intra-S phase DNA damage checkpoint

    Clinical Proteomics in Colorectal Cancer, a Promising Tool for Improving Personalised Medicine

    No full text
    Colorectal cancer is the third most common and the fourth most lethal cancer worldwide. In most of cases, patients are diagnosed at an advanced or even metastatic stage, thus explaining the high mortality. The lack of proper clinical tests and the complicated procedures currently used for detecting this cancer, as well as for predicting the response to treatment and the outcome of a patient’s resistance in guiding clinical practice, are key elements driving the search for biomarkers. In the present overview, the different biomarkers (diagnostic, prognostic, treatment resistance) discovered through proteomics studies in various colorectal cancer study models (blood, stool, biopsies), including the different proteomic techniques used for the discovery of these biomarkers, are reviewed, as well as the various tests used in clinical practice and those currently in clinical phase. These studies define the limits and perspectives related to proteomic biomarker research for personalised medicine in colorectal cancer

    The GAR motif of 53BP1 is a target for PRMT1 methylation and directs chromatin localisation in response to DNA damage.

    No full text
    The p53-binding protein 1 (53BP1) is rapidly recruited to sites of DNA double-strand breaks and forms characteristics nuclear foci, demonstrating its role in the early events of detection, signaling and repair of damaged DNA. 53BP1 contains a glycine arginine rich (GAR) motif of unknown function within its kinetochore binding domain. Herein, we show that the GAR motif of 53BP1 is arginine methylated by protein arginine methyltransferase 1 (PRMT1), the same methyltransferase that methylates MRE11. 53BP1 contains asymmetric dimethylarginines (aDMA) within cells, as detected with methylarginine-specific antibodies. Amino acid substitution of the arginines within the GAR motif of 53BP1 abrogated binding to single and double-stranded DNA, demonstrating that the GAR motif is required for DNA binding activity of 53BP1. Fibroblast cells treated with methylase inhibitors failed to relocalize 53BP1 to sites of DNA damage and formed few ?-H2AX foci, consistent with our previous data that MRE11 fails to relocalize to DNA damage sites in cells treated with methylase inhibitors. Our findings identify the GAR motif as a region required for 53BP1 DNA binding activity and is the site of methylation by PRMT1
    corecore