342 research outputs found
Convexity in partial cubes: the hull number
We prove that the combinatorial optimization problem of determining the hull
number of a partial cube is NP-complete. This makes partial cubes the minimal
graph class for which NP-completeness of this problem is known and improves
some earlier results in the literature.
On the other hand we provide a polynomial-time algorithm to determine the
hull number of planar partial cube quadrangulations.
Instances of the hull number problem for partial cubes described include
poset dimension and hitting sets for interiors of curves in the plane.
To obtain the above results, we investigate convexity in partial cubes and
characterize these graphs in terms of their lattice of convex subgraphs,
improving a theorem of Handa. Furthermore we provide a topological
representation theorem for planar partial cubes, generalizing a result of
Fukuda and Handa about rank three oriented matroids.Comment: 19 pages, 4 figure
Alpha scattering and capture reactions in the A = 7 system at low energies
Differential cross sections for He- scattering were measured in
the energy range up to 3 MeV. These data together with other available
experimental results for He and H scattering were
analyzed in the framework of the optical model using double-folded potentials.
The optical potentials obtained were used to calculate the astrophysical
S-factors of the capture reactions HeBe and
HLi, and the branching ratios for the transitions into
the two final Be and Li bound states, respectively. For
HeBe excellent agreement between calculated and
experimental data is obtained. For HLi a value
has been found which is a factor of about 1.5 larger than the adopted value.
For both capture reactions a similar branching ratio of has been obtained.Comment: submitted to Phys.Rev.C, 34 pages, figures available from one of the
authors, LaTeX with RevTeX, IK-TUW-Preprint 930540
Estimating the inelasticity with the information theory approach
Using the information theory approach, in both its extensive and nonextensive
versions, we estimate the inelasticity parameter of hadronic reactions
together with its distribution and energy dependence from and
data. We find that the inelasticity remains essentially constant in energy
except for a variation around , as was originally expected.Comment: 14 pages, 8 figures. Misprints correcte
Finite-temperature Fermi-edge singularity in tunneling studied using random telegraph signals
We show that random telegraph signals in metal-oxide-silicon transistors at
millikelvin temperatures provide a powerful means of investigating tunneling
between a two-dimensional electron gas and a single defect state. The tunneling
rate shows a peak when the defect level lines up with the Fermi energy, in
excellent agreement with theory of the Fermi-edge singularity at finite
temperature. This theory also indicates that defect levels are the origin of
the dissipative two-state systems observed previously in similar devices.Comment: 5 pages, REVTEX, 3 postscript figures included with epsfi
Systematics of Leading Particle Production
Using a QCD inspired model developed by our group for particle production,
the Interacting Gluon Model (IGM), we have made a systematic analysis of all
available data on leading particle spectra. These data include diffractive
collisions and photoproduction at HERA. With a small number of parameters
(essentially only the non-perturbative gluon-gluon cross section and the
fraction of diffractive events) good agreement with data is found. We show that
the difference between pion and proton leading spectra is due to their
different gluon distributions. We predict a universality in the diffractive
leading particle spectra in the large momentum region, which turns out to be
independent of the incident energy and of the projectile type.Comment: 13 pages, Latex, 4 ps figures. To appear in Phys. Rev.
Actors and networks or agents and structures: towards a realist view of information systems
Actor-network theory (ANT) has achieved a measure of popularity in the analysis of information systems. This paper looks at ANT from the perspective of the social realism of Margaret Archer. It argues that the main issue with ANT from a realist perspective is its adoption of a `flat' ontology, particularly with regard to human beings. It explores the value of incorporating concepts from ANT into a social realist approach, but argues that the latter offers a more productive way of approaching information systems
Stellar structure and compact objects before 1940: Towards relativistic astrophysics
Since the mid-1920s, different strands of research used stars as "physics
laboratories" for investigating the nature of matter under extreme densities
and pressures, impossible to realize on Earth. To trace this process this paper
is following the evolution of the concept of a dense core in stars, which was
important both for an understanding of stellar evolution and as a testing
ground for the fast-evolving field of nuclear physics. In spite of the divide
between physicists and astrophysicists, some key actors working in the
cross-fertilized soil of overlapping but different scientific cultures
formulated models and tentative theories that gradually evolved into more
realistic and structured astrophysical objects. These investigations culminated
in the first contact with general relativity in 1939, when J. Robert
Oppenheimer and his students George Volkoff and Hartland Snyder systematically
applied the theory to the dense core of a collapsing neutron star. This
pioneering application of Einstein's theory to an astrophysical compact object
can be regarded as a milestone in the path eventually leading to the emergence
of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal
Neutron cross sections for carbon and oxygen from new R-matrix analyses of the 13,14
We report the latest results from R-matrix analyses of reactions in the 13,14C and 17O systems that are of interest in reactor applications and nuclear astrophysics. These were done in order to provide separate cross sections for the stable isotopes (12,13C) of natural carbon, and to contribute improved cross sections for 16O to the CIELO project. Although particular attention was paid to the data in the standards region (<2 MeV) for the carbon isotopes, and to the low-energy region for n+16O, the analyses extend to several MeV neutron energy for all the systems. The fits to the data included are generally quite good, in keeping with the unitary constraints of R-matrix theory. The cross sections for 12,13C give results for natural carbon that are close to the previous evaluation by Fu et al. at energies below 1 MeV. Above that energy, the deviations become larger, especially near the narrow resonances. The thermal cross section for 16O is at the upper end of the range of recommended values, in excellent agreement with a high-precision measurement by Schneider. At higher energies, the 17O analysis follows in great detail high-resolution measurements of the total cross section, and agrees quite well with the 13C(α,n)16O cross section measurement of Bair and Haas at roughly their original normalization scale. We will discuss the implications of these new evaluations for critical benchmarks and astrophysical applications
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
We report on a measurement of the cosmic ray energy spectrum with the IceTop
air shower array, the surface component of the IceCube Neutrino Observatory at
the South Pole. The data used in this analysis were taken between June and
October, 2007, with 26 surface stations operational at that time, corresponding
to about one third of the final array. The fiducial area used in this analysis
was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV
measured for three different zenith angle ranges between 0{\deg} and 46{\deg}.
Because of the isotropy of cosmic rays in this energy range the spectra from
all zenith angle intervals have to agree. The cosmic-ray energy spectrum was
determined under different assumptions on the primary mass composition. Good
agreement of spectra in the three zenith angle ranges was found for the
assumption of pure proton and a simple two-component model. For zenith angles
{\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the
cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on
composition assumption. Spectral indices above the knee range from -3.08 to
-3.11 depending on primary mass composition assumption. Moreover, an indication
of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure
Does It Really Work? Re-Assessing the Impact of Pre-Departure Cross-Cultural Training on Expatriate Adjustment
Cultural adjustment is considered to be a prerequisite for expatriate success abroad. One way to enhance adjustment is to provide employees with knowledge and awareness of appropriate norms and behaviors of the host country through cross-cultural training (CCT). This article analyzes the impact of pre-departure CCT on expatriate adjustment and focuses on variations in participation, length and the comprehensiveness of training. Unlike previous research, the study focuses on the effectiveness of pre-departure CCT for non-US employees expatriated to a broad range of host country settings. Employing data from 339 expatriates from 20 German Multinational Corporations (MNCs) the study finds CCT has little if any effect on general, interactional or work setting expatriate adjustment. However, a significant impact of foreign language competence was found for all three dimensions of expatriate adjustment. We used interviews with 20 expatriates to supplement our discussion and provide further implications for practice
- …