20 research outputs found

    Breaking down the link between luminous and dark matter in massive galaxies

    Full text link
    We present a study on the clustering of a stellar mass selected sample of galaxies with stellar masses M*>10^10Msol at redshifts 0.4<z<2.0, taken from the Palomar Observatory Wide-field Infrared Survey. We examine the clustering properties of these stellar mass selected samples as a function of redshift and stellar mass, and find that galaxies with high stellar masses have a progressively higher clustering strength than galaxies with lower stellar masses. We also find that galaxies within a fixed stellar mass range have a higher clustering strength at higher redshifts. We further estimate the average total masses of the dark matter haloes hosting these stellar-mass selected galaxies. For all galaxies in our sample the stellar-mass-to-total-mass ratio is always lower than the universal baryonic mass fraction and the stellar-mass-to-total-mass ratio is strongly correlated with the halo masses for central galaxies, such that more massive haloes contain a lower fraction of their mass in the form of stars. The remaining baryonic mass is included partially in stars within satellite galaxies in these haloes, and as diffuse hot and warm gas. We also find that, at a fixed stellar mass, the stellar-to-total-mass ratio increases at lower redshifts. This suggests that galaxies at a fixed stellar mass form later in lower mass dark matter haloes, and earlier in massive haloes. We interpret this as a `halo downsizing' effect.Comment: Proceedings of the IAU Symposium No. 277, 2010 "Tracing the Ancestry of Galaxies on the Land of our Ancestors"; Eds. Carignan, Freeman and Combe

    Subaru high-z exploration of low-luminosity quasars (SHELLQs). I. Discovery of 15 quasars and bright galaxies at 5.7 < z < 6.9

    Full text link
    We report the discovery of 15 quasars and bright galaxies at 5.7 < z < 6.9. This is the initial result from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the exquisite multiband imaging data produced by the Subaru Hyper Suprime-Cam (HSC) Strategic Program survey. The candidate selection is performed by combining several photometric approaches including a Bayesian probabilistic algorithm to reject stars and dwarfs. The spectroscopic identification was carried out with the Gran Telescopio Canarias and the Subaru Telescope for the first 80 deg2 of the survey footprint. The success rate of our photometric selection is quite high, approaching 100 % at the brighter magnitudes (zAB < 23.5 mag). Our selection also recovered all the known high-z quasars on the HSC images. Among the 15 discovered objects, six are likely quasars, while the other six with interstellar absorption lines and in some cases narrow emission lines are likely bright Lyman-break galaxies. The remaining three objects have weak continua and very strong and narrow Ly alpha lines, which may be excited by ultraviolet light from both young stars and quasars. These results indicate that we are starting to see the steep rise of the luminosity function of z > 6 galaxies, compared with that of quasars, at magnitudes fainter than M1450 ~ -22 mag or zAB ~24 mag. Follow-up studies of the discovered objects as well as further survey observations are ongoing.Comment: Published in ApJ (828:26, 2016

    Landscape design for soil conservation under land use and climate change

    Get PDF
    International audienceSoils and landscapes evolve simultaneously. Soil evolution is controlled by redistribution and transformation processes influenced by topographic and climatic parameters, with also a major contribution of management strategies. The perennial landscape features have a strong influence on soil spatial distribution (geometry) and soil genesis. Building landscapes which enhance soil resilience to degradation processes and increase soil services appears as a promising way to adapt to forthcoming climatic and land use evolutions. The presentation aims to synthetize major results from a research program nicknamed Landsoil which focused on the evolution of agricultural soils over medium time scales (decades to centuries) in relation to changing conditions of land use and climate. Precise study of the soil 3D organization in three contrasted landscapes (Brittany, Touraine, Languedoc-Roussillon) enabled to link soil redistribution in space to landscape components (field geometry, hedges or ditches network) and their past evolution. A dynamic and high resolution spatial modeling approach was developed coupling erosion processes and soil organic matter evolution and was calibrated over past evolution using dating techniques (Cs137, C14, OSL). The resulting Landsoil model was afterwards applied in a prospective manner under different scenarios of land use and climate change over the 21th century. Indicators of soil vulnerability and soil resilience were defined and tested by the comparison of several prospective scenarios applied on a same landscape and by comparison of the contrasted landscapes

    Radio imaging of the Subaru/XMM-Newton Deep Field - III. Evolution of the radio luminosity function beyond z=1

    Full text link
    We present spectroscopic and eleven-band photometric redshifts for galaxies in the 100-uJy Subaru/XMM-Newton Deep Field radio source sample. We find good agreement between our redshift distribution and that predicted by the SKA Simulated Skies project. We find no correlation between K-band magnitude and radio flux, but show that sources with 1.4-GHz flux densities below ~1mJy are fainter in the near-infrared than brighter radio sources at the same redshift, and we discuss the implications of this result for spectroscopically-incomplete samples where the K-z relation has been used to estimate redshifts. We use the infrared--radio correlation to separate our sample into radio-loud and radio-quiet objects and show that only radio-loud hosts have spectral energy distributions consistent with predominantly old stellar populations, although the fraction of objects displaying such properties is a decreasing function of radio luminosity. We calculate the 1.4-GHz radio luminosity function (RLF) in redshift bins to z=4 and find that the space density of radio sources increases with lookback time to z~2, with a more rapid increase for more powerful sources. We demonstrate that radio-loud and radio-quiet sources of the same radio luminosity evolve very differently. Radio-quiet sources display strong evolution to z~2 while radio-loud AGNs below the break in the radio luminosity function evolve more modestly and show hints of a decline in their space density at z>1, with this decline occurring later for lower-luminosity objects. If the radio luminosities of these sources are a function of their black hole spins then slowly-rotating black holes must have a plentiful fuel supply for longer, perhaps because they have yet to encounter the major merger that will spin them up and use the remaining gas in a major burst of star formation.Comment: Accepted for publication in MNRAS: 36 pages, including 13 pages of figures to appear online only. In memory of Stev

    THE SXDF-ALMA 2 arcmin<sup>2</sup> DEEP SURVEY:STACKING REST-FRAME NEAR-INFRARED SELECTED OBJECTS

    Get PDF
    We present stacking analyses on our ALMA deep 1.1 mm imaging in the SXDF using 1.6 {\mu}m and 3.6 {\mu}m selected galaxies in the CANDELS WFC3 catalog. We detect a stacked flux of ~0.03-0.05 mJy, corresponding to LIR < 10^11 Lsun and a star formation rate (SFR) of ~ 15 Msun/yr at z = 2. We find that galaxies brighter in the rest-frame near-infrared tend to be also brighter at 1.1 mm, and galaxies fainter than m[3.6um] = 23 do not produce detectable 1.1 mm emission. This suggests a correlation between stellar mass and SFR, but outliers to this correlation are also observed, suggesting strongly boosted star formation or extremely large extinction. We also find tendencies that redder galaxies and galaxies at higher redshifts are brighter at 1.1 mm. Our field contains z ~ 2.5 H-alpha emitters and a bright single-dish source. However, we do not find evidence of bias in our results caused by the bright source. By combining the fluxes of sources detected by ALMA and fluxes of faint sources detected with stacking, we recover a 1.1 mm surface brightness of up to 20.3 +/- 1.2 Jy/deg, comparable to the extragalactic background light measured by COBE. Based on the fractions of optically faint sources in our and previous ALMA studies and the COBE measurements, we find that approximately half of the cosmic star formation may be obscured by dust and missed by deep optical surveys, Much deeper and wider ALMA imaging is therefore needed to better constrain the obscured cosmic star formation history.Comment: accepted for publication in Ap

    Photométrie profonde et multi-couleur à grand champ (évolution de l'agrégation des galaxies)

    No full text
    Les sondages récents de l'Univers révèlent que la matière se structure en filaments et en vide. Pour étudier l'évolution de la distribution spatiale des galaxies, donc de la matière, leur position sur le ciel, leur magnitude apparente et leur "redshift" doivent être connus précisément, nécessitant des données photométriques profondes à grands champs et des techniques de sélection multi-couleur. Deux ensembles de catalogues de galaxies ont été extraits de données obtenues avec les caméras grand champ au télescope TCFH, formant les sondages CFDF et VVDS. L'étude de l'agrégation des galaxies de champs sur de grandes échelles a permis de relier leur corrélation et leur couleur. La sélection de galaxies à grand "redshift" et l'étude de leur agrégation sur des échelles jamais testées, confirment leur très fort regroupement. Ces galaxies se sont donc formées dans les plus grands pics de densité de la matière noire sous-jacente, comme prédit par la théorie de formation biaisée des galaxies.AIX-MARSEILLE1-BU Sci.St Charles (130552104) / SudocSudocFranceF

    Surface Properties of Fluorite in Presence of Water: An Atomistic Investigation

    No full text
    International audienceDensity functional theory simulations, including a correction for dispersive interactions, were performed to investigate the adsorption of water on the main cleavage plane of the fluorite, namely, the (111) surface. In the case of a single molecule of water, we observe that the molecular form is preferred over the dissociated one, and absorbs on the surface with an energy of 55 kJ mol(-1), including a significant contribution from the dispersion forces. Also, we show that the substitution of a fluorine atom by a hydroxyl group on the surface of fluorite is not energetically favorable. Then, the hydration of the surface in function of the coverage by water molecules was studied in a systematic way. It was shown that the geometries involving the formation of a cluster of water molecules on the surface, with half of the molecules adsorbed, are the most favorable. Finally, ab initio molecular dynamics conducted at 300 K confirms the trends observed at 0 K, albeit the adsorption energies are reduced by about 10 kJ mol(-1). Also, we observe that once put in the interaction with a large number of water molecules, half of the calcium atoms at the surface are in close interaction with a water molecule, whereas the rest of the molecules are further away but present a relatively well-defined structure showing similarities with the one of water clusters
    corecore