94 research outputs found

    Variation of Basal EROD Activities in Ten Passerine Bird Species – Relationships with Diet and Migration Status

    Get PDF
    Inter-specific differences in animal defence mechanisms against toxic substances are currently poorly understood. The ethoxyresorufin-O-deethylase (EROD) enzyme plays an important role in defence against toxic chemicals in a wide variety of animals, and it is an important biomarker for environmental contamination. We compared basal hepatic EROD activity levels among ten passerine species to see if there is inter-specific variation in enzyme activity, especially in relation to their diet and migration status. Migratory insectivores showed higher EROD activity compared to granivores. We hypothesize that the variable invertebrate diet of migratory insectivores contains a wider range of natural toxins than the narrower diet of granivores. This may have affected the evolution of mixed function oxidases (MFO) system and enzyme activities. We further tested whether metabolic rates or relative liver size were associated with the variation in detoxification capacity. We found no association between EROD activity and relative (per mass unit) basal metabolic rate (BMR). Instead, EROD activity and relative liver mass (% of body mass) correlated positively, suggesting that a proportionally large liver also functions efficiently. Our results suggest that granivores and non-migratory birds may be more vulnerable to environmental contaminants than insectivores and migratory birds. The diet and migration status, however, are phylogenetically strongly connected to each other, and their roles cannot be fully separated in our analysis with only ten passerine species

    Monitoring Winter and Summer Abundance of Cetaceans in the Pelagos Sanctuary (Northwestern Mediterranean Sea) Through Aerial Surveys

    Get PDF
    Systematic long-term monitoring of abundance is essential to inform conservation measures and evaluate their effectiveness. To instigate such work in the Pelagos Sanctuary in the Mediterranean, two aerial surveys were conducted in winter and summer 2009. A total of 467 (131 in winter, 336 in summer) sightings of 7 species was made. Sample sizes were sufficient to estimate abundance of fin whales in summer (148; 95% CI = 87–254) and striped dolphins in winter (19,462; 95% CI = 12 939–29 273) and in summer (38 488; 95% CI = 27 447–53 968). Numbers of animals within the Sanctuary are significantly higher in summer, when human activities and thus potential population level impacts are highest. Comparisons with data from past shipboard surveys suggest an appreciable decrease in fin whales within the Sanctuary area and an appreciable increase in striped dolphins. Aerial surveys proved to be more efficient than ship surveys, allowing more robust estimates, with smaller CIs and CVs. These results provide essential baseline data for this marine protected area and continued regular surveys will allow the effectiveness of the MPA in terms of cetacean conservation to be evaluated and inform future management measures. The collected data may also be crucial in assessing whether ship strikes, one of the main causes of death for fin whales in the Mediterranean, are affecting the Mediterranean population

    Characterization of Cholinesterases in Plasma of Three Portuguese Native Bird Species: Application to Biomonitoring

    Get PDF
    Over the last decades the inhibition of plasma cholinesterase (ChE) activity has been widely used as a biomarker to diagnose organophosphate and carbamate exposure. Plasma ChE activity is a useful and non-invasive method to monitor bird exposure to anticholinesterase compounds; nonetheless several studies had shown that the ChE form(s) present in avian plasma may vary greatly among species. In order to support further biomonitoring studies and provide reference data for wildlife risk-assessment, plasma cholinesterase of the northern gannet (Morus bassanus), the white stork (Ciconia ciconia) and the grey heron (Ardea cinerea) were characterized using three substrates (acetylthiocholine iodide, propionylthiocholine iodide, and S-butyrylthiocholine iodide) and three ChE inhibitors (eserine sulphate, BW284C51, and iso-OMPA). Additionally, the range of ChE activity that may be considered as basal levels for non-exposed individuals was determined. The results suggest that in the plasma of the three species studied the main cholinesterase form present is butyrylcholinesterase (BChE). Plasma BChE activity in non-exposed individuals was 0.48±0.11 SD U/ml, 0.39±0.12 SD U/ml, 0.15±0.04 SD U/ml in the northern gannet, white stork and grey heron, respectively. These results are crucial for the further use of plasma BChE activity in these bird species as a contamination bioindicator of anti-cholinesterase agents in both wetland and marine environments. Our findings also underscore the importance of plasma ChE characterization before its use as a biomarker in biomonitoring studies with birds

    Plastic accumulation in the Mediterranean Sea

    Get PDF
    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region

    Estrogen-like activity of seafood related to environmental chemical contaminants

    Get PDF
    BACKGROUND: A wide variety of environmental pollutants occur in surface waters, including estuarine and marine waters. Many of these contaminants are recognised as endocrine disrupting chemicals (EDCs) which can adversely affect the male and female reproductive system by binding the estrogen receptor and exhibiting hormone-like activities. In this study the estrogenic activity of extracts of edible marine organisms for human consumption from the Mediterranean Sea was assayed. METHODS: Marine organisms were collected in two different areas of the Mediterranean Sea. The estrogenic activity of tissues was assessed using an in vitro yeast reporter gene assay (S. cerevisiae RMY 326 ER-ERE). Concentrations of polychlorinated biphenyls (PCBs) (congeners 28, 52, 101, 118, 138, 153, 180) in fish tissue was also evaluated. RESULTS: Thirty-eight percent of extracts showed a hormone-like activity higher than 10% of the activity elicited by 10 nM 17b-estradiol (E2) used as control. Total PCB concentrations ranged from 0.002 up to 1.785 ng/g wet weight. Chemical analyses detected different levels of contamination among the species collected in the two areas, with the ones collected in the Adriatic Sea showing concentrations significantly higher than those collected in the Tyrrhenian Sea (p < 0.01). CONCLUSION: The more frequent combination of chemicals in the samples that showed higher estrogenic activity was PCB 28, PCB 101, PCB 153, PCB 180. The content of PCBs and estrogenic activity did not reveal any significant correlation

    Mysid crustaceans as standard models for the screening and testing of endocrine-disrupting chemicals

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 205-219, doi:10.1007/s10646-006-0122-0.Investigative efforts into the potential endocrine-disrupting effects of chemicals have mainly concentrated on vertebrates, with significantly less attention paid to understanding potential endocrine disruption in the invertebrates. Given that invertebrates account for at least 95% of all known animal species and are critical to ecosystem structure and function, it remains essential to close this gap in knowledge and research. The lack of progress regarding endocrine disruption in invertebrates is still largely due to: (1) our ignorance of mode-of-action, physiological control, and hormone structure and function in invertebrates; (2) lack of a standardized invertebrate assay; (3) the irrelevance to most invertebrates of the proposed activity-based biological indicators for endocrine disruptor exposure (androgen, estrogen and thyroid); (4) limited field studies. Past and ongoing research efforts using the standard invertebrate toxicity test model, the mysid shrimp, have aimed at addressing some of these issues. The present review serves as an update to a previous publication on the use of mysid shrimp for the evaluation of endocrine disruptors (Verslycke et al., 2004a). It summarizes recent investigative efforts that have significantly advanced our understanding of invertebrate-specific endocrine toxicity, population modeling, field studies, and transgeneration standard test development using the mysid model.Supported by a Fellowship of the Belgian American Educational Foundation

    Copper Induced Lysosomal Membrane Destabilisation in Haemolymph Cells of Mediterranean Green Crab (Carcinus aestuarii, Nardo, 1847) from the Narta Lagoon (Albania)

    Get PDF
    ABSTRACTDestabilisation of blood cell lysosomes in Mediterranean green crabCarcinus aestuarii was investigated using Neutral Red Retention Assay (NRRA). Crabs collected in Narta Lagoon, Vlora (Albania) during May 2014 were exposed in the laboratory to sub-lethal, environmentally realistic concentrations of copper. Neutral Red Retention Time (NRRT) and glucose concentration in haemolymph of animals were measured. The mean NRRT showed a significant reduction for the animals of the treatment group compared to the control one (from 118.6 ± 28.4 to 36.4 ± 10.48 min, p<0.05), indicating damage of lysosomal membrane. Haemolymph glucose concentration was significantly higher in the treatment group (from 37.8 ± 2.7 to 137.8.4 ± 16.2 mg/dL, p<0.05) than in control group, demonstrating the presence of stress on the animals. These results showed thatC. aestuarii could be used as a successful and reliable bioindicator for evaluating the exposure to contaminants in laboratory conditions. NRRA provides a successful tool for rapid assessment of heavy metal pollution effects on marine biota

    Effects of temperature in juvenile seabass (Dicentrarchus labrax L.) biomarker responses and behaviour: implications for environmental monitoring

    Get PDF
    The effects of temperature on European seabass (Dicentrarchus labrax L.) juveniles were investigated using a 30-day bioassay carried out at 18 and 25 °C in laboratory conditions. A multiparameter approach was applied including fish swimming velocity and several biochemical parameters involved in important physiological functions. Fish exposed for four weeks to 25 °C showed a decreased swimming capacity, concomitant with increased oxidative stress (increased catalase and glutathione peroxidase activities) and damage (increased lipid peroxidation levels), increased activity of an enzyme involved in energy production through the aerobic pathway (isocitrate dehydrogenase) and increased activities of brain and muscle cholinesterases (neurotransmission) compared to fish kept at 18 °C. Globally, these findings indicate that basic functions, essential for juvenile seabass surviving and well performing in the wild, such as predation, predator avoidance, neurofunction and ability to face chemical stress may be compromised with increasing water temperature. This may be of particular concern if D. labrax recruitment phase in northwest European estuaries and coastal areas happens gradually inmore warm environments as a consequence of global warming. Considering that the selected endpoints are generally applied in monitoring studies with different species, these findings also highlight the need of more research, including interdisciplinary and multiparameter approaches, on the impacts of temperature on marine species, and stress the importance of considering scenarios of temperature increase in environmental monitoring and in marine ecological risk assessment

    The Impact of Microplastics on Filter-Feeding Megafauna

    No full text
    The Mediterranean basin, a worldwide biodiversity hotspot, as previously underlined, is one of the world seas most affected by marine litter, including microplastics [1–3]. Recent studies in the different regions of the basin suggest that some areas, including important MPAs and Specially Protected Areas of Mediterranean Importance (SPAMI) such as the Pelagos Sanctuary, are affected by important concentrations of microplastics and plastic additives, representing a potential risk for endangered species (baleen whales, sea turtles, filter feeder sharks) [4–10] living in this area and for the all Mediterranean biodiversity [11–14]. In this paper we reconstruct the scientific story of the invisible war between the charismatic megafauna (baleen whales, filter feeder sharks and manta rays) against the smallest marine debris (microplastics) and their potential toxicological effects
    corecore