37 research outputs found

    Effect of multiple plane turning of eggs during incubation on hatchability

    Get PDF
    Includes bibliographical references (page [2])

    Effect of holding temperature on hatchability of chicken eggs

    Get PDF
    This bulletin reports on Department of Poultry Husbandry research project 40, Care of Hatching Eggs--P. [2].Digitized 2007 AES.Includes bibliographical references (page 12)

    Reducing spoilage in shell eggs by the use of fungicides

    Get PDF
    Digitized 2007 AES.Includes bibliographical references (pages 30-31)

    Maintaining quality in shell eggs by heat treatment

    Get PDF
    Digitized 2007 AES.Includes bibliographical references (page 22)

    Survey of highly non-Keplerian orbits with low-thrust propulsion

    Get PDF
    Celestial mechanics has traditionally been concerned with orbital motion under the action of a conservative gravitational potential. In particular, the inverse square gravitational force due to the potential of a uniform, spherical mass leads to a family of conic section orbits, as determined by Isaac Newton, who showed that Kepler‟s laws were derivable from his theory of gravitation. While orbital motion under the action of a conservative gravitational potential leads to an array of problems with often complex and interesting solutions, the addition of non-conservative forces offers new avenues of investigation. In particular, non-conservative forces lead to a rich diversity of problems associated with the existence, stability and control of families of highly non-Keplerian orbits generated by a gravitational potential and a non-conservative force. Highly non-Keplerian orbits can potentially have a broad range of practical applications across a number of different disciplines. This review aims to summarize the combined wealth of literature concerned with the dynamics, stability and control of highly non-Keplerian orbits for various low thrust propulsion devices, and to demonstrate some of these potential applications

    Comparing political futures: the rise and use of scenarios in future-oriented area studies

    Get PDF
    The predictive ability of scholars of politics has long been a subject of theoretical debate and methodological development. In theoretical debate, prediction represents a central issue regarding the extent to which the study of politics is scientific. In methodological development, much effort and resource have been devoted to a diverse range of predictive approaches, with varying degrees of success. Expectations that scholars forecast accurately come as much from the policy and media worlds as from the academy. Since the end of the Cold War, scenario development has become prevalent in future-oriented research by area studies scholars. This approach is long due critical re-assessment. For all its strengths as a policy tool, scenario development tends towards a bounded methodology, driving the process of anticipating futures along predetermined paths into a standardised range of options, and paying insufficient attention to theoretical and contextual understandings available within the relevant scholarly disciplines

    Writing Russia's future: paradigms, drivers, and scenarios

    Get PDF
    The development of prediction and forecasting in the social sciences over the past century and more is closely linked with developments in Russia. The Soviet collapse undermined confidence in predictive capabilities, and scenario planning emerged as the dominant future-oriented methodology in area studies, including the study of Russia. Scenarists anticipate multiple futures rather than predicting one. The approach is too rarely critiqued. Building on an account of Russia-related forecasting in the twentieth century, analysis of two decades of scenarios reveals uniform accounts which downplay the insights of experts and of social science theory alike

    Atmospheric electrification in dusty, reactive gases in the solar system and beyond

    Get PDF
    Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons on Brown Dwarfs, extrasolar planets and protoplanetary disks is not well understood yet. This paper offers an interdisciplinary view on electrification processes and their feedback on their hosting environment in meteorology, volcanology, planetology and research on extrasolar planets and planet formation
    corecore