2,087 research outputs found
Planet formation models: the interplay with the planetesimal disc
According to the sequential accretion model, giant planet formation is based
first on the formation of a solid core which, when massive enough, can
gravitationally bind gas from the nebula to form the envelope. In order to
trigger the accretion of gas, the core has to grow up to several Earth masses
before the gas component of the protoplanetary disc dissipates. We compute the
formation of planets, considering the oligarchic regime for the growth of the
solid core. Embryos growing in the disc stir their neighbour planetesimals,
exciting their relative velocities, which makes accretion more difficult. We
compute the excitation state of planetesimals, as a result of stirring by
forming planets, and gas-solid interactions. We find that the formation of
giant planets is favoured by the accretion of small planetesimals, as their
random velocities are more easily damped by the gas drag of the nebula.
Moreover, the capture radius of a protoplanet with a (tiny) envelope is also
larger for small planetesimals. However, planets migrate as a result of
disc-planet angular momentum exchange, with important consequences for their
survival: due to the slow growth of a protoplanet in the oligarchic regime,
rapid inward type I migration has important implications on intermediate mass
planets that have not started yet their runaway accretion phase of gas. Most of
these planets are lost in the central star. Surviving planets have either
masses below 10 ME or above several Jupiter masses. To form giant planets
before the dissipation of the disc, small planetesimals (~ 0.1 km) have to be
the major contributors of the solid accretion process. However, the combination
of oligarchic growth and fast inward migration leads to the absence of
intermediate mass planets. Other processes must therefore be at work in order
to explain the population of extrasolar planets presently known.Comment: Accepted for publication in Astronomy and Astrophysic
CHEOPS performance for exomoons: The detectability of exomoons by using optimal decision algorithm
Many attempts have already been made for detecting exomoons around transiting
exoplanets but the first confirmed discovery is still pending. The experience
that have been gathered so far allow us to better optimize future space
telescopes for this challenge, already during the development phase. In this
paper we focus on the forthcoming CHaraterising ExOPlanet Satellite
(CHEOPS),describing an optimized decision algorithm with step-by-step
evaluation, and calculating the number of required transits for an exomoon
detection for various planet-moon configurations that can be observable by
CHEOPS. We explore the most efficient way for such an observation which
minimizes the cost in observing time. Our study is based on PTV observations
(photocentric transit timing variation, Szab\'o et al. 2006) in simulated
CHEOPS data, but the recipe does not depend on the actual detection method, and
it can be substituted with e.g. the photodynamical method for later
applications. Using the current state-of-the-art level simulation of CHEOPS
data we analyzed transit observation sets for different star-planet-moon
configurations and performed a bootstrap analysis to determine their detection
statistics. We have found that the detection limit is around an Earth-sized
moon. In the case of favorable spatial configurations, systems with at least
such a large moon and with at least Neptune-sized planet, 80\% detection chance
requires at least 5-6 transit observations on average. There is also non-zero
chance in the case of smaller moons, but the detection statistics deteriorates
rapidly, while the necessary transit measurements increase fast. (abridged)Comment: 32 pages, 14 figures, accepted for publication in PAS
Astronomical spectrograph calibration with broad-spectrum frequency combs
Broadband femtosecond-laser frequency combs are filtered to
spectrographically resolvable frequency-mode spacing, and the limitations of
using cavities for spectral filtering are considered. Data and theory are used
to show implications to spectrographic calibration of high-resolution,
astronomical spectrometers
Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor
We report measurements of absolute transition frequencies and hyperfine
coupling constants for the 8S_{1/2}, 9S_{1/2}, 7D_{3/2}, and 7D_{5/2} states in
^{133}Cs vapor. The stepwise excitation through either the 6P_{1/2} or 6P_{3/2}
intermediate state is performed directly with broadband laser light from a
stabilized femtosecond laser optical-frequency comb. The laser beam is split,
counter-propagated and focused into a room-temperature Cs vapor cell. The
repetition rate of the frequency comb is scanned and we detect the fluorescence
on the 7P_{1/2,3/2} -> 6S_{1/2} branches of the decay of the excited states.
The excitations to the different states are isolated by the introduction of
narrow-bandwidth interference filters in the laser beam paths. Using a
nonlinear least-squares method we find measurements of transition frequencies
and hyperfine coupling constants that are in agreement with other recent
measurements for the 8S state and provide improvement by two orders of
magnitude over previously published results for the 9S and 7D states.Comment: 14 pages, 14 figure
Afterword: Interrogating naturalisation, naturalised uncertainty and anxious states
This afterword addresses four broad questions raised by this special issue: uncertainty as a mode of governance, the ontological politics of naturalisation, the citizen-noncitizen distinction, and performative (anxious) states. First, taking uncertainty as a mode of neoliberal governance as the starting point of analysis, this afterword invites the scrutiny of the ways in which the artifice and uncertainty of citizenship are concealed or rendered irrelevant in naturalisation processes. Second, the contributions to this special issue consider naturalisation as a social and political process, rather than solely as a legal status. Pushing this conception further, this afterword considers naturalisation as transactional in two ways: on the one hand, migrants navigate a number of formal and informal requirements and âtestsâ, where some transactions are needed along the way, be they financial, practical, or symbolic. On the other hand, transactions will also occur in the translation of political ideology into policy. Third, naturalisation regimes both blur and reify the citizen-noncitizen and the citizen-migrant distinctions. Distinctions which this afterword unpacks by unravelling the assumed separation between citizenship and migration. How are citizens and migrants migratised? How are migrants and citizens citizenised? Fourth, a further element of the analysis concerns how state-citizen relations are enacted and by extension, how the state itself is âmade upâ and âanxiousâ. The affective politics of âanxious statesâ are telling of the frames of desire of naturalisation, which are founded on a threefold principle: the desirability of citizenship, the desire for desirable citizens, and the desirability of the state itself
Measurement of excited-state transitions in cold calcium atoms by direct femtosecond frequency-comb spectroscopy
We apply direct frequency-comb spectroscopy, in combination with precision cw
spectroscopy, to measure the transition
frequency in cold calcium atoms. A 657 nm ultrastable cw laser was used to
excite atoms on the narrow ( Hz) clock transition, and the direct output of the frequency comb was
used to excite those atoms from the state to the state. The resonance of this second stage was detected by observing a
decrease in population of the ground state as a result of atoms being optically
pumped to the metastable states. The transition frequency is measured to be kHz; which is an improvement by almost four orders of magnitude over
the previously measured value. In addition, we demonstrate spectroscopy on
magnetically trapped atoms in the state.Comment: 4 pages 5 figure
Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider
We present an optical frequency divider based on a 200 MHz repetition rate
Er:fiber mode-locked laser that, when locked to a stable optical frequency
reference, generates microwave signals with absolute phase noise that is equal
to or better than cryogenic microwave oscillators. At 1 Hz offset from a 10 GHz
carrier, the phase noise is below -100 dBc/Hz, limited by the optical
reference. For offset frequencies > 10 kHz, the phase noise is shot noise
limited at -145 dBc/Hz. An analysis of the contribution of the residual noise
from the Er:fiber optical frequency divider is also presented.Comment: 4 pages, 3 figure
Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb
We have performed sub-Doppler spectroscopy on the narrow intercombination
line of cold calcium atoms using the amplified output of a femtosecond laser
frequency comb. Injection locking of a 657-nm diode laser with a femtosecond
comb allows for two regimes of amplification, one in which many lines of the
comb are amplified, and one where a single line is predominantly amplified. The
output of the laser in both regimes was used to perform kilohertz-level
spectroscopy. This experiment demonstrates the potential for high-resolution
absolute-frequency spectroscopy over the entire spectrum of the frequency comb
output using a single high-finesse optical reference cavity.Comment: 4 pages, 4 Figure
Cavity QED with optically transported atoms
Ultracold Rb atoms are delivered into a high-finesse optical
micro-cavity using a translating optical lattice trap and detected via the
cavity field. The atoms are loaded into an optical lattice from a magneto-optic
trap (MOT) and transported 1.5 cm into the cavity. Our cavity satisfies the
strong-coupling requirements for a single intracavity atom, thus permitting
real-time observation of single atoms transported into the cavity. This
transport scheme enables us to vary the number of intracavity atoms from 1 to
100 corresponding to a maximum atomic cooperativity parameter of 5400, the
highest value ever achieved in an atom--cavity system. When many atoms are
loaded into the cavity, optical bistability is directly measured in real-time
cavity transmission.Comment: 4 figures, 4 page
- âŠ