24 research outputs found

    Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography

    Get PDF
    Two end‐member kinematic models of crustal shortening across the Himalaya are currently debated: one assumes localized thrusting along a single major thrust fault, the Main Himalayan Thrust (MHT) with nonuniform underplating due to duplexing, and the other advocates for out‐of‐sequence (OOS) thrusting in addition to thrusting along the MHT and underplating. We assess these two models based on the modeling of thermochronological, thermometric, and thermobarometric data from the central Nepal Himalaya. We complement a data set compiled from the literature with 114 ^(40)Ar/^(39)Ar, 10 apatite fission track, and 5 zircon (U‐Th)/He thermochronological data. The data are predicted using a thermokinematic model (PECUBE), and the model parameters are constrained using an inverse approach based on the Neighborhood Algorithm. The model parameters include geometric characteristics as well as overthrusting rates, radiogenic heat production in the High Himalayan Crystalline (HHC) sequence, the age of initiation of the duplex or of out-of-sequence thrusting. Both models can provide a satisfactory fit to the inverted data. However, the model with out-of-sequence thrusting implies an unrealistic convergence rate ≄30 mm yr^(−1). The out-of-sequence thrust model can be adjusted to fit the convergence rate and the thermochronological data if the Main Central Thrust zone is assigned a constant geometry and a dip angle of about 30° and a slip rate of <1 mm yr^(−1). In the duplex model, the 20 mm yr^(−1) convergence rate is partitioned between an overthrusting rate of 5.8 ± 1.4 mm yr^(−1) and an underthrusting rate of 14.2 ± 1.8 mm yr^(−1). Modern rock uplift rates are estimated to increase from about 0.9 ± 0.31 mm yr^(−1) in the Lesser Himalaya to 3.0 ± 0.9 mm yr^(−1) at the front of the high range, 86 ± 13 km from the Main Frontal Thrust. The effective friction coefficient is estimated to be 0.07 or smaller, and the radiogenic heat production of HHC units is estimated to be 2.2 ± 0.1 ”Wm^(−3). The midcrustal duplex initiated at 9.8 ± 1.7 Ma, leading to an increase of uplift rate at front of the High Himalaya from 0.9 ± 0.31 to 3.05 ± 0.9 mm yr^(−1). We also run 3-D models by coupling PECUBE with a landscape evolution model (CASCADE). This modeling shows that the effect of the evolving topography can explain a fraction of the scatter observed in the data but not all of it, suggesting that lateral variations of the kinematics of crustal deformation and exhumation are likely. It has been argued that the steep physiographic transition at the foot of the Greater Himalayan Sequence indicates OOS thrusting, but our results demonstrate that the best fit duplex model derived from the thermochronological and thermobarometric data reproduces the present morphology of the Nepal Himalaya equally well

    Ventilation non invasive (de l'expérience hospitaliÚre à la prise en charge pré-hospitaliÚre de l'insuffisance respiratoire aiguë)

    No full text
    BORDEAUX2-BU Santé (330632101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Variability and Expression of Ankyrin Domain Genes in Wolbachia Variants Infecting the Mosquito Culex pipiens

    No full text
    International audienceWolbachia strains are maternally inherited endosymbiotic bacteria that infect many arthropod species and have evolved several different ways of manipulating their hosts, the most frequent way being cytoplasmic incompatibility (Q). CI leads to embryo death in crosses between infected males and uninfected females as well as in crosses between individuals infected by incompatible Wolbachia strains. The mosquito Culex pipiens exhibits the highest crossing type variability reported so far. Our crossing data support the notion that CI might be driven by at least two distinct genetic units that control the CI functions independently in males and females. Although the molecular basis of CI remains unknown, proteins with ankyrin (ANK) domains represent promising candidates since they might interact with a wide range of host proteins. Here we searched for sequence variability in the 58 ANK genes carried in the genomes of Wolbachia variants infecting Culex pipiens. Only five ANK genes were polymorphic in the genomes of incompatible Wolbachia variants, and none correlated with the CI pattern obtained with 15 mosquito strains (representing 14 Wolbachia variants). Further analysis of ANK gene expression evidenced host- and sex-dependent variations, which did not improve the correlation. Taken together, these data do not support the direct implication of ANK genes in CI determinism

    Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat

    No full text
    International audienceDespite the large morphological and physiological changes that plants have undergone through domestication, little is known about their impact on their microbiome. Here we characterized rhizospheric bacterial and fungal communities as well as the abundance of N-cycling microbial guilds across thirty-nine accessions of tetraploid wheat, Triticum turgidum, from four domestication groups ranging from the wild subspecies to the semi dwarf elite cultivars. We identified several microbial phylotypes displaying significant variation in their relative abundance depending on the wheat domestication group with a stronger impact of domestication on fungi. The relative abundance of potential fungal plant pathogens belonging to the Sordariomycetes class decreased in domesticated compared to wild emmer while the opposite was found for members of the Glomeromycetes, which are obligate plant symbionts. The depletion of nitrifiers and of arbuscular mycorrhizal fungi in elite wheat cultivars compared to primitive domesticated forms suggests that the Green Revolution has decreased the coupling between plant and rhizosphere microbes that are potentially important for plant nutrient availability. Both plant diameter and fine root percentage exhibited the highest number of associations with microbial taxa, highlighting their putative role in shaping the rhizosphere microbiota during domestication. Aside from domestication, significant variation of bacterial and fungal community composition was found among accessions within each domestication group. In particular, the relative abundances of Ophiostomataceae and of Rhizobiales were strongly dependent on the host accession, with heritability estimates of ~ 27% and ~ 25%, indicating that there might be room for genetic improvement via introgression of ancestral plant rhizosphere-beneficial microbe associations. Crop domestication events led to spectacular modifications of plant traits increasing their suitability to human requirements. Cereals and especially wheat have been domesticated in the Middle East 1. Domestication process led to dramatic phenotypic changes in cultivated species in relation to cultivation conditions and human needs. The Domestication syndrome 2 refers to the whole set of phenotypic changes occurred during this process, including: loss of dormancy, increasing seed size, modifying seed dispersal mode and apical dominance as well photoperiod sensitivity. ope

    Fossil rhabdoviral sequences integrated into arthropod genomes: ontogeny, evolution, and potential functionality.

    No full text
    International audienceRetroelements represent a considerable fraction of many eukaryotic genomes and are considered major drives for adaptive genetic innovations. Recent discoveries showed that despite not normally using DNA intermediates like retroviruses do, Mononegaviruses (i.e., viruses with nonsegmented, negative-sense RNA genomes) can integrate gene fragments into the genomes of their hosts. This was shown for Bornaviridae and Filoviridae, the sequences of which have been found integrated into the germ line cells of many vertebrate hosts. Here, we show that Rhabdoviridae sequences, the major Mononegavirales family, have integrated only into the genomes of arthropod species. We identified 185 integrated rhabdoviral elements (IREs) coding for nucleoproteins, glycoproteins, or RNA-dependent RNA polymerases; they were mostly found in the genomes of the mosquito Aedes aegypti and the blacklegged tick Ixodes scapularis. Phylogenetic analyses showed that most IREs in A. aegypti derived from multiple independent integration events. Since RNA viruses are submitted to much higher substitution rates as compared with their hosts, IREs thus represent fossil traces of the diversity of extinct Rhabdoviruses. Furthermore, analyses of orthologous IREs in A. aegypti field mosquitoes sampled worldwide identified an integrated polymerase IRE fragment that appeared under purifying selection within several million years, which supports a functional role in the host's biology. These results show that A. aegypti was subjected to repeated Rhabdovirus infectious episodes during its evolution history, which led to the accumulation of many integrated sequences. They also suggest that like retroviruses, integrated rhabdoviral sequences may participate actively in the evolution of their hosts

    A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila.

    No full text
    Acetylcholinesterase (AChE) is the target of two major insecticide families, organophosphates (OPs) and carbamates. AChE insensitivity is a frequent resistance mechanism in insects and responsible mutations in the ace gene were identified in two Diptera, Drosophila melanogaster and Musca domestica. However, for other insects, the ace gene cloned by homology with Drosophila does not code for the insensitive AChE in resistant individuals, indicating the existence of a second ace locus. We identified two AChE loci in the genome of Anopheles gambiae, one (ace-1) being a new locus and the other (ace-2) being homologous to the gene previously described in Drosophila. The gene ace-1 has no obvious homologue in the Drosophila genome and was found in 15 mosquito species investigated. In An. gambiae, ace-1 and ace-2 display 53% similarity at the amino acid level and an overall phylogeny indicates that they probably diverged before the differentiation of insects. Thus, both genes are likely to be present in the majority of insects and the absence of ace-1 in Drosophila is probably due to a secondary loss. In one mosquito (Culex pipiens), ace-1 was found to be tightly linked with insecticide resistance and probably encodes the AChE OP target. These results have important implications for the design of new insecticides, as the target AChE is thus encoded by distinct genes in different insect groups, even within the Diptera: ace-2 in at least the Drosophilidae and Muscidae and ace-1 in at least the Culicidae. Evolutionary scenarios leading to such a peculiar situation are discussed

    ReprĂ©sentations et transmission des connaissances Ă  la lumiĂšre de l’innovation numĂ©rique. Actes du colloque Jeunes Chercheurs PRAXILING UMR 5267, 7-8 Novembre 2019

    No full text
    International audienceLa litteratie numerique occupe une place importante dans les competences necessaires aux citoyens du XXIe siecle. Cet article a pour objectif de presenter les resultats d’une enquete destinee a faire un etat des lieux de la litteratie numerique dont disposent les etudiants chinois pour l’apprentissage du francais. Les resultats montrent que ce public a acces a une diversite d’equipements informatiques et est capable de s’en servir ; mais il peine a depasser certains usages ordinaires, bien que la plupart des etudiants adopte une attitude positive vis-a-vis de l’integration des TIC dans l’apprentissage du francais
    corecore