20 research outputs found

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Dual n-back training improves functional connectivity of the right inferior frontal gyrus at rest

    Get PDF
    Several studies have shown that the benefits of working memory (WM) training can be attributed to functional and structural neural changes in the underlying neural substrate. In the current study, we investigated whether the functional connectivity of the brain at rest in the default mode network (DMN) changes with WM training. We varied the complexity of the training intervention so, that half of the participants attended dual n-back training whereas the other half attended single n-back training. This way we could assess the effects of different training task parameters on possible connectivity changes. After 16 training sessions, the dual n-back training group showed improved performance accompanied by increased functional connectivity of the ventral DMN in the right inferior frontal gyrus, which correlated with improvements in WM. We also observed decreased functional connectivity in the left superior parietal cortex in this group. The single n-back training group did not show significant training-related changes. These results show that a demanding short-term WM training intervention can alter the default state of the brain.Peer Reviewe

    I know that I know nothing: Cortical thickness and functional connectivity underlying meta-ignorance ability in pre-schoolers

    Get PDF
    Metacognition plays a pivotal role in human development. The ability to realize that we do not know something, or meta-ignorance, emerges after approximately five years of age. We sought for the brain systems that underlie the developmental emergence of this ability in a preschool sample. Twenty-four children aged between five and six years answered questions under three conditions. In the critical partial knowledge condition, an experimenter first showed two toys to a child, then announced that she would place one of them in a box, out of sight from the child. The experimenter then asked the child whether she knew which toy was in the box. Children who gave consistently correct answers to this question (n = 9) showed greater cortical thickness in a cluster within left medial orbitofrontal cortex than children who did not (n = 15). Further, seed-based functional connectivity analyses of the brain during resting state revealed that this region is functionally connected to the medial orbitofrontal gyrus, posterior cingulate gyrus and precuneus, and mid- and inferior temporal gyri. This finding suggests that the default mode network, critically through its prefrontal regions, supports introspective processing. It leads to the emergence of metacognitive monitoring allowing children to explicitly report their own ignorance.Peer Reviewe
    corecore