124 research outputs found

    Automatic cell counting in vivo in the larval nervous system of Drosophila

    Get PDF
    Identification and counting of cells is necessary to test biological hypotheses, for instance of nervous system formation, disease, degeneration, injury and regeneration, but manual counting is time-consuming, tedious, and subject to bias. The fruit-fly Drosophila is a widely used model organism to analyse gene function, and most research is carried out in the intact animal or in whole organs, rather than in cell culture. Inferences on gene function require that cell counts are known from these sample types. Image processing and pattern recognition techniques are appropriate tools to automate cell counting. However, counting cells in Drosophila is a complex task: variations in immunohistochemical markers and developmental stages result in images of very different properties, rendering it challenging to identify true cells. Here, we present a technique for counting automatically larval glial cells in 3D, from confocal microscopy serial optical sections. Local outlier thresholding and domes are combined to find the cells. Shape descriptors extracted from a data set are used to characterise cells and avoid over-segmentation. Morphological operators are employed to divide cells that could otherwise be missed. The method is accurate and very fast, and treats all samples equally and objectively, rendering all data comparable across specimens. Our method is also applicable to identify cells labelled with other nuclear markers and in sections of mouse tissues

    Parental body condition does not correlate with offspring sex-ratio in Cory's shearwater

    Get PDF
    We analyzed offspring sex ratio variation in Mediterranean Cory's Shearwater (Calonectris d. diomedea) during two consecutive breeding seasons in two colonies. We test for differential breeding conditions between years and colonies looking at several breeding parameters and parental condition. We then explored the relationship between offspring sex ratio and parental condition and breeding parameters. This species is sexually dimorphic with males larger and heavier than females; consequently we expected differential parental cost in rearing sexes, or a greater sensitivity of male chicks to adverse conditions, which may lead to biased sex ratios. Chicks were sexed molecularly by the amplification of the CHD genes. Offspring sex ratio did not differ from parity, either at hatching or fledging, regardless of the colony or year. However, parental body condition and breeding parameters such as egg size and breeding success were different between years and colonies. Nevertheless, neither nestling mortality nor body condition at fledging varied between years or colonies, suggesting that male and female chicks were probably not differentially affected by variability in breeding conditions

    Uso de tecnologías avanzadas de inteligencia artificial en aplicaciones agrícolas y botánicas

    Get PDF
    Este artículo presenta el uso de tecnologías avanzadas de inteligencia artificial en aplicaciones agrícolas y botánicas, desarrolladas por los semilleros de investigación Lún y MECAUTRONIC del grupo de investigación D+TEC de la Universidad de Ibagué. La aplicación de la inteligencia artificial en la agricultura y el cuidado del medio ambiente tiene un gran campo de acción destacando el uso de técnicas como el procesamiento de imágenes, el aprendizaje de máquinas y la interacción con el entorno

    Ecological and physiological variance in T-cell mediated immune response in Cory's shearwaters

    Get PDF
    T-cell mediated immune response (CMI) hasbeen widely studied in relation to individual andfitness components in birds. However, few studieshave simultaneously examined individual and socialfactors and habitat-mediated variance in theimmunity of chicks and adults from the samepopulation and in the same breeding season. Weinvestigated ecological and physiological variancein CMI of male and female nestlings and adults in abreeding population of Cory's Shearwaters(Calonectrisdiomedea) in theMediterranean Sea. Explanatory variables includedindividual traits (body condition, carbon andnitrogen stable isotope ratios, plasma totalproteins, triglycerides, uric acid, osmolarity,β-hydroxy-butyrate, erythrocyte meancorpuscular diameter, hematocrit, andhemoglobin) and burrow traits(temperature, isolation, and physicalstructure). During incubation, immune responseof adult males was significantly greater than thatof females. Nestlings exhibited a lower immuneresponse than adults. Ecological and physiologicalfactors affecting immune response differed betweenadults and nestlings. General linear models showedthat immune response in adult males was positivelyassociated with burrow isolation, suggesting thatmales breeding at higher densities suffer immunesystem suppression. In contrast, immune response inchicks was positively associated with bodycondition and plasma triglyceride levels.Therefore, adult immune response appears to beassociated with social stress, whereas a trade-offbetween immune function and fasting capability mayexist for nestlings. Our results, and those fromprevious studies, provide support for anasymmetrical influence of ecological andphysiological factors on the health of differentage and sex groups within a population, and for theimportance of simultaneously considering individualand population characteristics in intraspecificstudies of immune response

    Un método cuantitativo para analizar redes neuronales marcadas por histoquímica para acetilcolinesterasa

    Get PDF
    Enzyme histochemistry is frequently used in classical morphological studies for the qualitative analysis of neuronal networks. However, this procedure does not readily provide quantitative results. Two new alternative approaches based on digital image processing techniques were explored and the data quality compared. The preliminary results explored the feasibility of these approaches in the applied setting.El análisis cualitativo de las redes neuronales por histoquímica enzimática se usa comúnmente en los estudios morfológicos tradicionales. Una limitante de este tipo de estudios consiste en la dificultad de obtener resultados cuantitativos. Este artículo presenta dos técnicas originales de procesamiento de imágenes para realizar estudios cuantitativos y un análisis comparativo entre ellas. Los resultados preliminares presentados permiten verificar la utilidad de la metodología aplicada

    Determinantes anatómicos de la arteria femoral profunda en la revascularización del miembro inferior

    Get PDF
    ResumenLa irrigación del miembro inferior depende de las arterias femoral superficial y profunda. En los casos de oclusión de la arteria femoral superficial puede ser necesaria la implementación de un by-pass desde la arteria femoral común hacia la arteria poplítea utilizando como puente una vena safena autóloga; en algunos eventos en que este procedimiento no puede llevarse a cabo, se sugiere optar por realizar el bypass desde la arteria femoral profunda. En este artículo describimos los elementos morfológicos de la arteria femoral profunda y sus variaciones, que son relevantes al tomar decisiones durante estas formas de procedimientos.[Corzo EG, Forero PL, Castro MF, Pereira JA, Saavedra M. Determinantes anatómicos de la arteria femoral profunda en la revascularización del miembro inferior. MedUNAB 2008; 11:149-153].Palabras clave: Arteria femoral profunda, Revascularización, Circulación colateral.&nbsp

    Segmentation of meristem cells by an automated opinion algorithm

    Get PDF
    Meristem cells are irregularly shaped and appear in confocal images as dark areas surrounded by bright ones. Images are characterized by regions of very low contrast and absolute loss of edges deeper into the meristem. Edges are blurred, discontinuous, sometimes indistinguishable, and the intensity level inside the cells is similar to the background of the image. Recently, a technique called Parametric Segmentation Tuning was introduced for the optimization of segmentation parameters in diatom images. This paper presents a PST-tuned automatic segmentation method of meristem cells in microscopy images based on mathematical morphology. The optimal parameters of the algorithm are found by means of an iterative process that compares the segmented images obtained by successive variations of the parameters. Then, an optimization function is used to determine which pair of successive images allows for the best segmentation. The technique was validated by comparing its results with those obtained by a level set algorithm and a balloon segmentation technique. The outcomes show that our methodology offers better results than two free available state-of-the-art alternatives, being superior in all cases studied, losing 9.09% of the cells in the worst situation, against 75.81 and 25.45 obtained in the level set and the balloon segmentation techniques, respectively. The optimization method can be employed to tune the parameters of other meristem segmentation methods

    DeadEasy Mito-Glia: Automatic Counting of Mitotic Cells and Glial Cells in Drosophila

    Get PDF
    Cell number changes during normal development, and in disease (e.g., neurodegeneration, cancer). Many genes affect cell number, thus functional genetic analysis frequently requires analysis of cell number alterations upon loss of function mutations or in gain of function experiments. Drosophila is a most powerful model organism to investigate the function of genes involved in development or disease in vivo. Image processing and pattern recognition techniques can be used to extract information from microscopy images to quantify automatically distinct cellular features, but these methods are still not very extended in this model organism. Thus cellular quantification is often carried out manually, which is laborious, tedious, error prone or humanly unfeasible. Here, we present DeadEasy Mito-Glia, an image processing method to count automatically the number of mitotic cells labelled with anti-phospho-histone H3 and of glial cells labelled with anti-Repo in Drosophila embryos. This programme belongs to the DeadEasy suite of which we have previously developed versions to count apoptotic cells and neuronal nuclei. Having separate programmes is paramount for accuracy. DeadEasy Mito-Glia is very easy to use, fast, objective and very accurate when counting dividing cells and glial cells labelled with a nuclear marker. Although this method has been validated for Drosophila embryos, we provide an interactive window for biologists to easily extend its application to other nuclear markers and other sample types. DeadEasy MitoGlia is freely available as an ImageJ plug-in, it increases the repertoire of tools for in vivo genetic analysis, and it will be of interest to a broad community of developmental, cancer and neuro-biologists

    The Glial Regenerative Response to Central Nervous System Injury Is Enabled by Pros-Notch and Pros-NFκB Feedback

    Get PDF
    Organisms are structurally robust, as cells accommodate changes preserving structural integrity and function. The molecular mechanisms underlying structural robustness and plasticity are poorly understood, but can be investigated by probing how cells respond to injury. Injury to the CNS induces proliferation of enwrapping glia, leading to axonal re-enwrapment and partial functional recovery. This glial regenerative response is found across species, and may reflect a common underlying genetic mechanism. Here, we show that injury to the Drosophila larval CNS induces glial proliferation, and we uncover a gene network controlling this response. It consists of the mutual maintenance between the cell cycle inhibitor Prospero (Pros) and the cell cycle activators Notch and NFκB. Together they maintain glia in the brink of dividing, they enable glial proliferation following injury, and subsequently they exert negative feedback on cell division restoring cell cycle arrest. Pros also promotes glial differentiation, resolving vacuolization, enabling debris clearance and axonal enwrapment. Disruption of this gene network prevents repair and induces tumourigenesis. Using wound area measurements across genotypes and time-lapse recordings we show that when glial proliferation and glial differentiation are abolished, both the size of the glial wound and neuropile vacuolization increase. When glial proliferation and differentiation are enabled, glial wound size decreases and injury-induced apoptosis and vacuolization are prevented. The uncovered gene network promotes regeneration of the glial lesion and neuropile repair. In the unharmed animal, it is most likely a homeostatic mechanism for structural robustness. This gene network may be of relevance to mammalian glia to promote repair upon CNS injury or disease
    • …
    corecore