454 research outputs found

    Virtual Structure Constants as Intersection Numbers of Moduli Space of Polynomial Maps with Two Marked Points

    Full text link
    In this paper, we derive the virtual structure constants used in mirror computation of degree k hypersurface in CP^{N-1}, by using localization computation applied to moduli space of polynomial maps from CP^{1} to CP^{N-1} with two marked points. We also apply this technique to non-nef local geometry O(1)+O(-3)->CP^{1} and realize mirror computation without using Birkhoff factorization.Comment: 10 pages, latex, a minor change in Section 4, English is refined, Some typing errors in Section 3 are correcte

    Classical stability of U(1)_A domain walls in dense matter QCD

    Full text link
    It was recently shown that there exists metastable U(1)_A domain wall configurations in high-density QCD (\mu >> 1 GeV). In the following we will assess the stability of such non-trivial field configurations at intermediate densities (\mu < 1 GeV). The existence of such configurations at intermediate densities could have interesting consequences for the physics of neutron stars with high core density.Comment: 13 pages, 2 Postscript figures, typos correcte

    Additive Manufacturing of a Point-of-Care “Polypill:” Fabrication of Concept Capsules of Complex Geometry with Bespoke Release against Cardiovascular Disease

    Get PDF
    YesPolypharmacy is often needed for the management of cardiovascular diseases and is associated with poor adherence to treatment. Hence, highly flexible and adaptable systems are in high demand to accommodate complex therapeutic regimens. A novel design approach is employed to fabricate highly modular 3D printed “polypill” capsules with bespoke release patterns for multiple drugs. Complex structures are devised using combined fused deposition modeling 3D printing aligned with hot-filling syringes. Two unibody highly modular capsule skeletons with four separate compartments are devised: i) concentric format: two external compartments for early release while two inner compartments for delayed release, or ii) parallel format: where nondissolving capsule shells with free-pass corridors and dissolution rate-limiting pores are used to achieve immediate and extended drug releases, respectively. Controlling drug release is achieved through digital manipulation of shell thickness in the concentric format or the size of the rate limiting pores in the parallel format. Target drug release profiles are achieved with variable orders and configurations, hence confirming the modular nature with capacity to accommodate therapeutics of different properties. Projection of the pharmacokinetic profile of this digital system capsules reveal how the developed approach can be applied in dose individualization and achieving multiple desired pharmacokinetic profiles

    Global Strings in High Density QCD

    Get PDF
    We show that several types of global strings occur in colour superconducting quark matter due to the spontaneous violation of relevant U(1) symmetries. These include the baryon U(1)_B, and approximate axial U(1)_A symmetries as well as an approximate U(1)_S arising from kaon condensation. We discuss some general properties of these strings and their interactions. In particular, we demonstrate that the U(1)_A strings behave as superconducting strings. We draw some parallels between these strings and global cosmological strings and discuss some possible implications of these strings to the physics in neutron star cores.Comment: LaTeX JHEP-format (26 pages) Option in source for REVTeX4 forma

    3D evolution of a filament disappearance event observed by STEREO

    Full text link
    A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the southern hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories in particular by THEMIS. One day before the disappearance, Hα\alpha observations showed up and down flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4 degrees, showed quite different views of this untwisting flux rope in He II 304 \AA\ images. Here, we reconstruct the 3D geometry of the filament during its eruption phase using STEREO EUV He II 304 \AA\ images and find that the filament was highly inclined to the solar normal. The He II 304 \AA\ movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km s1^{-1}, during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe XII 195 \AA\ images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope

    Manifold-Topology from K-Causal Order

    Get PDF
    To a significant extent, the metrical and topological properties of spacetime can be described purely order-theoretically. The K+K^+ relation has proven to be useful for this purpose, and one could wonder whether it could serve as the primary causal order from which everything else would follow. In that direction, we prove, by defining a suitable order-theoretic boundary of K+(p)K^+(p), that in a KK-causal spacetime, the manifold-topology can be recovered from K+K^+. We also state a conjecture on how the chronological relation I+I^+ could be defined directly in terms of K+K^+.Comment: v2: 9 pages, 2 figures. Minor change

    A SLUGGS and Gemini/GMOS combined study of the elliptical galaxy M60: wide-field photometry and kinematics of the globular cluster system

    Get PDF
    We present new wide-field photometry and spectroscopy of the globular clusters (GCs) around NGC 4649 (M60), the third brightest galaxy in the Virgo cluster. Imaging of NGC 4649 was assembled from a recently obtained Hubble Space Telescope/Advanced Camera for Surveys mosaic, and new Subaru/Suprime-Cam and archival Canada–France–Hawaii Telescope/MegaCam data. About 1200 sources were followed up spectroscopically using combined observations from three multi-object spectrographs: Keck/Deep Imaging Multi-Object Spectrograph, Gemini/Gemini Multi-Object Spectrograph and Multiple Mirror Telescope/Hectospec. We confirm 431 unique GCs belonging to NGC 4649, a factor of 3.5 larger than previous data sets and with a factor of 3 improvement in velocity precision. We confirm significant GC colour bimodality and find that the red GCs are more centrally concentrated, while the blue GCs are more spatially extended. We infer negative GC colour gradients in the innermost 20 kpc and flat gradients out to large radii. Rotation is detected along the galaxy major axis for all tracers: blue GCs, red GCs, galaxy stars and planetary nebulae. We compare the observed properties of NGC 4649 with galaxy formation models. We find that formation via a major merger between two gas-poor galaxies, followed by satellite accretion, can consistently reproduce the observations of NGC 4649 at different radii. We find no strong evidence to support an interaction between NGC 4649 and the neighbouring spiral galaxy NGC 4647. We identify interesting GC kinematic features in our data, such as counter-rotating subgroups and bumpy kinematic profiles, which encode more clues about the formation history of NGC 4649

    Spatial Variation in Population Structure and Its Relation to Movement and the Potential for Dispersal in a Model Intertidal Invertebrate

    Get PDF
    Dispersal, the movement of an individual away from its natal or breeding ground, has been studied extensively in birds and mammals to understand the costs and benefits of movement behavior. Whether or not invertebrates disperse in response to such attributes as habitat quality or density of conspecifics remains uncertain, due in part to the difficulties in marking and recapturing invertebrates. In the upper Bay of Fundy, Canada, the intertidal amphipod Corophium volutator swims at night around the new or full moon. Furthermore, this species is regionally widespread across a large spatial scale with site-to-site variation in population structure. Such variation provides a backdrop against which biological determinants of dispersal can be investigated. We conducted a large-scale study at nine mudflats, and used swimmer density, sampled using stationary plankton nets, as a proxy for dispersing individuals. We also sampled mud residents using sediment cores over 3 sampling rounds (20–28 June, 10–17 July, 2–11 August 2010). Density of swimmers was most variable at the largest spatial scales, indicating important population-level variation. The smallest juveniles and large juveniles or small adults (particularly females) were consistently overrepresented as swimmers. Small juveniles swam at most times and locations, whereas swimming of young females decreased with increasing mud presence of young males, and swimming of large juveniles decreased with increasing mud presence of adults. Swimming in most stages increased with density of mud residents; however, proportionally less swimming occurred as total mud resident density increased. We suggest small juveniles move in search of C. volutator aggregations which possibly act as a proxy for better habitat. We also suggest large juveniles and small adults move if potential mates are limiting. Future studies can use sampling designs over large spatial scales with varying population structure to help understand the behavioral ecology of movement, and dispersal in invertebrate taxa

    Fibroblast Growth Factor 7 Releasing Particles Enhance Islet Engraftment and Improve Metabolic Control Following Islet Transplantation in Mice with Diabetes

    Get PDF
    open access articleTransplantation of islets in Type 1 diabetes is limited by poor islet engraftment into the liver, with 2-3 donor pancreases required per recipient. We aimed to condition the liver to enhance islet engraftment to improve long-term graft function. Diabetic mice received a non-curative islet transplant (n=400 islets) via the hepatic portal vein (HPV) with Fibroblast Growth Factor 7 loaded galactoslyated poly(DL-lactide-co-glycolic acid) (FGF7-GAL-PLGA) particles; 26μm diameter particles specifically targeted the liver, promoting hepatocyte proliferation in short-term experiments: in mice receiving 0.1mg FGF7-GAL-PLGA particles (60ng FGF7) versus vehicle, cell proliferation was induced specifically in the liver with greater efficacy and specificity than subcutaneous FGF7 (1.25mg/kg ×2 doses; ~75μg FGF7). Numbers of engrafted islets and vascularisation were greater in liver sections of mice receiving islets and FGF7-GAL-PLGA particles versus mice receiving islets alone, 72 hours post-transplant. More mice (6 out of 8) that received islets and FGF7-GAL-PLGA particles normalised blood glucose concentrations by 30- days post-transplantation, versus 0 of 8 mice receiving islets alone with no evidence of increased proliferation of cells within the liver at this stage and normal liver function tests. This work shows liver targeted FGF7-GAL-PLGA particles achieve selective FGF7 delivery to the liver promoting islet engraftment to help normalise blood glucose levels with a good safety profile
    corecore