_	
2	Additive manufacturing of a point-of-care
3	"polypill": Fabrication of concept capsules of
4	complex geometry with bespoke release against
5	cardiovascular disease
6	
7 8	Beatriz C. Pereira, Abdullah Isreb, Mohammad Isreb, Robert T. Forbes, Enoche F. Oga*, Mohamed A. Alhnan**
9	
10	
11	B. C. Pereira, Dr. A. Isreb, Prof. R. T. Forbes, *Dr. E. F. Oga,
12	School of Pharmacy & Biomedical Sciences
13	University of Central Lancashire
14	Fylde road, PR1 2HE, UK
15	E-mail: EOga@uclan.ac.uk
16	
17	**Dr M. A. Alhnan
18	Institute of Pharmaceutical Sciences
19	King's College London
20	5.77 Franklin Wilkins Building, 150 Stamford Street, SE1 9NH, UK
21	E-mail: alhnan@kcl.ac.uk
22	M.Isreb
23	School of Pharmacy
24	University of Bradford
25	Richmond Road, Bradford BD7 1DP, UK
26 27	Keywords: multidrug, fixed dose combination (FDC), digital health, computer-aided design (CAD), controlled-release, in vitro-in vivo correlation
28	

Abstract

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Polypharmacy is often needed for the management of cardiovascular diseases and is associated with poor adherence to treatment. Hence, highly flexible and adaptable systems are in high demand to accommodate complex therapeutic regimens. A novel design approach was employed to fabricate highly modular 3D printed 'polypill' capsules with bespoke release patterns for multiple drugs. Complex structures were devised using combined fused deposition modelling 3D printing aligned with hotfilling syringes. Two unibody highly modular capsule skeletons with 4 separate compartments were devised: i) concentric format: two external compartments for early release whilst two inner compartments for delayed release, or ii) parallel format: where non-dissolving capsule shells with free-pass corridors and dissolution rate-limiting pores were used to achieve immediate and extended drug releases, respectively. Controlling drug release was achieved through digital manipulation of shell thickness in the concentric format or the size of the rate limiting pores in the parallel format. Target drug release profiles were achieved with variable orders and configurations, hence confirming the modular nature with capacity to accommodate therapeutics of different properties. Projection of the pharmacokinetic profile of this digital system capsules revealed how the developed approach could be applied in dose individualization and achieving multiple desired pharmacokinetic profiles.

1. Introduction

Population-based surveys and cross-sectional studies have shown that polypharmacy affects 40-
50% of elderly patients in high income countries. [1-3] Among chronic conditions, cardiovascular
disease (CVD) accounts for 45% of all deaths in Europe ^[4] and its management necessitates a
complex therapeutic regimen, which usually includes anti-platelet, anti-hypertensive and lipid-
lowering agents. ^[5] Such complex treatment has been linked to many issues, including
psychological distress, depressing symptoms and poor adherence among patients. ^[6-8] Common
strategies to improve patient compliance include the use of medication boxes or technologies like
PillPack dispensing system, alarms to remember dose times, medicines administration records
(MARS), and smartphone applications such as My Medication Passport. [9-11]
However, these approaches are usually associated with instructions that may be hard-to-read,
understand and/or even follow by elderly patients. [12] Additionally, daily medication boxes often
contain different unlabelled tablets/capsules that may have similar physical appearance and might
lead to dispensing, patients or carers errors. Therefore, technology-based approaches need a more
rigorous evaluation of cost-effectiveness and patient acceptability, suggesting that a more
simplified and efficient strategy is needed. ^[13] Polypills can simplify the dosing regimen without
compromising the therapeutic plan. The rapidly growing interest in this approach resulted in the
progression of several combinations of drugs to clinical trials and registered products. ^[14] Despite
their proven advantages, the rigid nature of fixed multiple-drug combination in a single pill may
be suitable for a limited number of patients. Hence, a highly adaptable manufacturing technique
that allows easy selection and titration of multiple drug doses is needed.
3D printing is an emerging production method with potential superior agility in the production of
on-demand medicines, with a small number of processing steps, low costs and flexibility of
design. [15, 16] Several studies have reported the applicability of fused deposition modelling (FDM)
3D printing in the production of solid dosage forms. ^[17-19] Its advantage of medicine
personalization has been extensively explored, in special patient groups (e.g. paediatrics), by

which can be easily shaped to each patient's needs. [21, 22] 76 77 To optimise therapeutic effect, controlling drug release from 3D printing technologies was achieved by modifying printing parameters e.g. infill percentage, [23, 24] or the shape or size of the 78 dosage form. [25] 3D printed capsules avoid the high temperatures usually required with FDM 3D 79 printing. An early attempt of FDM 3D printing of a pulsatile release capsule system was reported 80 in 2015. [26] Further studies have achieved delayed [27, 28] or pulsatile release capsules. [29] The 81 82 capsules were manufactured in two pieces to be manually assembled in a second step. Therefore, a one-step 'print and fill' capsule was developed. [30, 31] However, the use of water-based 83 formulations was linked to moisture absorption by Polyvinyl(alcohol) (PVA) shells with swelling, 84 85 wall delamination and leakage of the infill. Such deficiencies highlighted the need for formulation 86 optimization of a capsule filling that was compatible with the polymeric walls. Also desirable, and explored in the current study, is a 3D printable modular system capable of including larger 87 88 numbers of molecules and controlling their dissolution rate. Physiologically based pharmacokinetic (PBPK) model simulation is a tool which has been 89 90 increasingly used in pharmaceutical development in order to improve efficiency and reduce costs 91 in drug development and absorption, distribution, metabolism & excretion (ADME) assessments. 92 It has proved useful in optimization of clinical trials design, for example in the selection of the 93 drug dose, and helped to understand how individual variability affects drug pharmacokinetics. The simulation model has also demonstrated to be a valuable tool in clinical trials that need 94 individualized adjustable drug doses, for example paediatric^[32] and hepatically impaired 95 patients.[33] 96 97 In this study, we present a facile modular platform for individualized complex therapeutic regimens. By adopting combined hot-fill technology to produce unibody capsules of complex 98 99 structure, a highly modular capsule platform with tuneable release was achieved by mere use of a modified digital design. Four model drugs were used in the development of two highly flexible 100 systems. The first system was based on manipulating pore size in a water insoluble biodegradable 101

improving characteristics such as palatability, [20] and by fabrication of a 'dynamic dose combiner'

shell (polylactic acid (PLA)). The second system was based on shell thickness control of a water soluble PVA shell. The *in-silico* simulation of pharmacokinetics of these tablets aimed to provide a means of pre-designing optimization of the pharmacokinetics of multiple drugs to suit individual patient need.

2. Results and discussion

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Capsules of complex structure were designed to include an oval hollow geometry comprising 4 compartments, where each compartment accommodated a single drug-loaded capsule filling. The compartments were configured in two design formats (parallel or concentric) to achieve different drug release patterns. Each design was split into two complementary parts: top and bottom design files (correspondent to the base and cap) (Figure 1). The design allowed for three-step manufacturing, where the base of the capsules was produced first (Figure 2A3 and 2B3), then hot-filled (Figures 2A4 and 2B4) before, thirdly, a complementary cap is printed with subsequent sealing of the capsule (Figure 2A5 and 2B5). After dispensing the identical volume of the filling, it reached similar height within the capsule. The physical isolation of each drug in a separate compartment is considered to prevent potential drug-drug interactions within the dosage form and allow for the individualization and "tuning" of each model drug's release profile. Parallel compartments were designed into the capsular structure with different pore sizes, according to the desired release profile (Figure 1A). Internal compartments were designed with (2 mm) free-pass windows to yield an immediate release profile whilst external compartments were fabricated with rate-limiting pores to extend drug release from the capsule. Following an optimization process of pore configuration, dual pores for each side of the compartment seem to allow faster drug release than a single pore of double size (Supporting information Figures S1). The impact of pore size on drug release was also screened for all module drugs (Supporting information Figures S2). Finally, total pore surface areas of 0.25 mm² and 0.49 mm² for each compartment were selected to offer an extended release (Figure 1B4). The inclusion of four identical square-shaped pores with a total area of 0.25mm² and 0.49mm² for each compartment

128	permitted aqueous flow within the capsule. SEM images confirmed pore walls within a range of
129	\pm 60 μm of the design (data not shown).
130	To obtain extended and delayed drug release profiles, an alternative format (concentric capsule)
131	was devised. Two external and two internal compartments were configured to obtain extended
132	and delayed drug release profiles, respectively (Figure 1B). A wall thickness of 0.6 mm was
133	selected to maintain physical integrity of the capsule. By manipulating the thickness of the
134	bottom, upper and inner walls of the two inner compartments, the design aimed to control the lag
135	time of the delayed drug release. Capsules of different thickness of the inner wall (in multiple
136	increments of 0.6 mm) were fabricated to probe their effectiveness in delaying drug release
137	(Figures 2A1/2/6).
138	In order to establish the modularity of the system to meet various patients' needs, both design
139	formats were configured in two drug-sequences: Sequence I, where the most soluble drugs
140	(lisinopril and amlodipine) are dispensed in the immediate (PLA shell) or extended (PVA shell)
141	release compartment and the least soluble drugs (indapamide and rosuvastatin) were placed in the
142	extended (PLA shell) or delayed (PVA shell) release compartments. Sequence II, differed in that
143	the model drugs were configured in reverse order.
144	Liquid infill formulations are often used in capsules to improve solubility or the dissolution of
145	poorly soluble drugs. ^[34] Putting a liquid formulation into a 3D printed capsule shell presents a
146	major challenge with reported leaking issues and loss of capsule structure. ^[31] To establish
147	compatibility between the infill versus the PVA and PLA 3D printed capsule shells, a fluorescent
148	molecule was used in the hot fill process of a liquid formulation of PEG 400, a commonly used
149	solubility enhancer in soft gelatine capsules. ^[35, 36] Photographs of PVA concentric capsules
150	showed the absorption of the PEG solution by the shell through time (Figure 3A). Indeed,
151	microscopic pictures confirmed the migration of fluorescent solution through the polymeric shell
152	in contact with the PEG solution. This could be attributed to the established miscibility of PEG
153	400 with the PVA matrix. [37] Likely arising from the significant known plasticising effect of PEG
154	[38], capsule shell deformation and compromised physical integrity were observed. Uncontrolled,

155	this could lead to interference of the different drug-loaded fillings and alter the individualized
156	release patterns of the drugs as well as initiating potential drug-drug interactions. On the other
157	hand, PLA capsules remained visibly unchanged with PEG solution as the capsule filling (Figure
158	3B). However, a previous study has reported the plasticising effect of PEG 400 in PLA when
159	mixed at 90 °C. [39]
160	To overcome this, PEG 4000 (melting temperature of 61.5°C,) was added to allow solidification
161	of the structure at room temperature (Figure 4E/F/G/H). The paste was engineered to solidify
162	rapidly within the capsule compartments. Our initial screening indicated that an overall
163	percentage of PEG blends is ideal around 40% to maintain the integrity of the shell e.g. an
164	increased ratio of PEG 400 yielded fillings that leaked and were not compatible with the shell,
165	while fillings with increased ratio of PEG 4000 were too slow to solidify and compromised the
166	shell integrity (data not shown). In order to regulate the rheological behaviour during extrusion,
167	lactose was added to the blend and yielding a facile filling paste to be hot-filled at relatively low
168	temperature (60 °C) Thermogravimetric analysis was performed in order to assess thermal
169	stability of the raw materials and the developed drug-loaded capsule fillings. Thermogravimetric
170	profiles of drug-loaded capsule fillings showed continuous weight loss of about 3% up to 120 $^{\circ}$ C,
171	which was believed to be due to evaporation of moisture in the PEG 400, PEG 4000 and drug
172	substance (Figure 4 A/B/C/D). No significant weight loss was observed at the processing
173	temperature (60 °C).
174	The stability of the drug in the fill matrix was determined after 24 hrs to assess the compatibility
175	of the model drugs at the processing conditions temperature. All individual capsule fillings
176	showed a good stability at the processing temperatures for a period of at least 24 hrs (data not
177	shown), a finding indicating that the composition would be compatible with a process automation
178	using dispensing heated syringes.
179	Considering the results of differential scanning calorimetry, the presence of the endothermic
180	peaks corresponding to the melting of a blend of PEG 400, PEG 4000 and lactose for the drug-
181	free and drug-loaded capsule fillings, confirms the presence of crystalline components, which

182	facilitates their solidification on dispensing to the capsule shell. A broad peak is seen in both drug-
183	free and drug-loaded capsule fillings in the range of 100-150 °C, that may be explained by
184	dehydration of lactose (Figure 4). The DSC profile for the lisinopril-loaded capsule filling
185	suggested degradation at around 150 °C. This finding was not unexpected given the reported
186	sensitivity of this molecule to degradation through a Maillard reaction with lactose (Figure 4E).
187	$^{[40]}$ The use of 60 $^{\circ}\text{C}$ as a processing temperature will minimise the interaction.
188	XRD intensity patterns of the lisinopril-loaded capsule filling showed diffraction peaks
189	characteristic of the drug substance at $2(\Theta)=7.5^{\circ}$, 12.5° and 13.6° , revealing the presence of the
190	crystalline form of the drug (Figure 5A). The absence of characteristic diffraction peaks of
191	amlodipine, indapamide and rosuvastatin in their correspondent capsule filling indicates that these
192	drug substances were likely amorphous within capsule fill matrices (Figures 5B-D). This finding
193	was consistent with DSC data, which revealed no endothermic events near the melting
194	temperatures of any of the drugs. These findings could be partially explained by the solubility
195	parameters values of PEG and the model drugs (Table 2). Lisinopril and amlodipine showed the
196	highest difference in total solubility parameter value in comparison to PEG, while rosuvastating
197	and indapamide have solubility parameter values with a difference of <7 MPa ^{1/2} .
198	While PEG 400 serves as solvent, PEG 4000 and lactose were added to increase the viscosity of
199	infill upon cooling to room temperature. Therefore, rheology studies were performed to confirm
200	the functionality of PEG 4000 and lactose in the capsule fillings as viscosity enhancers. This will
201	allow to assess the flowability of the filling (syringeability) at various temperatures and identify
202	the ideal temperature for capsule filling. The viscosity of the filling was assessed at various
203	temperatures. Complex viscosity data at the processing temperature (50 °C) are shown in Figure
204	5E . (Attempts to assess the complex viscosity of the samples at room temperature (25 °C) were
205	unsuccessful, due to the solid nature of the ink). The minimum temperature that allowed
206	successful analysis was 40 °C and results can be seen in Figure 5F. The results show that PEG
207	400 has a relatively low viscosity with minimum shear thinning behaviour (typical Newtonian
208	fluid). On the other hand, PEG 4000 has the highest complex viscosity value with a more

209	pronounced shear thinning behaviour typical of thermoplastic polymers. Their mixtures exhibited
210	a complex value in between both the pure material with shear thinning behaviour. The addition
211	of lactose increased the complex viscosity value while maintaining the shear-thinning behaviour.
212	In general, adding model drugs to each formulation did not have a significant effect on the
213	complex viscosity (complex viscosity studies for other model drugs are shown in Supporting
214	information, Figure S3).
215	The strategy of pore fabrication via FDM 3D printing can influence drug release profiles. Initially,
216	drug release from the capsule was attempted through inclusion of a single perforating square
217	shape (pore), however drug release was limited. To accelerate drug release, a dual pore system
218	was employed for each compartment. The effect on drug release was markedly evident compared
219	to a single pore, despite having the same total area (Supporting information, Figure S1). The
220	increase was attributed to an enhanced hydrodynamic flow through the capsule in the dual pore
221	system, leading to accelerated media flow and a thinner dissolution layer. It is also possible that
222	air bubbles can be entrapped within the compartment and hinder hydrodynamic flow within the
223	compartment. Therefore, this risk was mitigated by using four rate-limiting pores per
224	compartment.
225	Different pore areas were then evaluated (Supporting information, Figure S2). In general, an
226	increase in the total area pore area resulted in faster release rate of the drugs. However, controlling
227	release by modification of the pores area proved to be more effective with indapamide and
228	rosuvastatin, which have lower aqueous solubilities, when compared with lisinopril and
229	amlodipine. [41-44] Total areas of 0.25 and 0.49 mm ² provided a better extended release for lisinopril
230	and amlodipine, and indapamide and rosuvastatin, respectively. In Sequence I, lisinopril and
231	amlodipine showed an immediate release with >80% of drug dissolved in 30 min. A total pore
232	area of 0.49 mm ² was necessary to achieve 89% and 55% of indapamide and rosuvastatin release
233	after 24 hrs (Figure 6A2). The effect of drug solubility was visually demonstrated by comparing
234	with Sequence II, where the free-pass corridors allowed >80% of indapamide release only after 3
235	hours (Figure 6B). An increase in the dissolution rate after pH change at 2 hrs was observed for

rosuvastatin and indapamide which can be explained by their acidic nature (pKa of 4.2-4.6 and
8.8 respectively). [45, 46] Although a 0.49 mm² area proved to be suitable to reach extended release
in Sequence I, a smaller area (of $0.25\ mm^2$) was necessary to slow down lisinopril and amlodipine
release (Figure 6B1). This illustrated the importance of software input to "tune" drug release
through pore size to accommodate a wide range of model drugs of variable solubilities.
Incomplete drug release was observed for indapamide and rosuvastatin in Figures 6A1/A2 and
for lisinopril and indapamide in Figure 6B1, after a period of 24 hrs. This might lead to higher
plasma exposure when patients have longer transit time.[47] Therefore, it is important to engineer
capsules to complete drug release within the transit time of non-disintegrating oral doses.
In order to achieve a chronotherapeutic effect, a concentric PVA polymeric shell was devised.
The design was successful in producing extended and time-dependent delayed release (Figure 7).
In general, a thickness of 0.6 mm was responsible for a lag time of 1 hr, and drugs dispensed in
the external compartments achieved >75% of drug released after approximately 3 hours after the
start of dissolution (Figure 7). This lag phase can be attributed to the time needed for the
dissolution of the outer shell and drugs in the external compartments. The dissolution mechanism
of PVA in the capsule shell is mediated mainly through erosion. ^[48,49] Increasing the inner, top and
bottom walls thicknesses to 1.2, 1.8 and 2.4 mm resulted in a lag time of \sim 4, 6 and 8 hrs,
respectively, and >80% drug dissolution around 6 hrs thereafter (Figure 11A3/B3). External
compartments (of 0.6 mm thickness) eroded at a speed of 0.6 \pm 0 mm/hr, and internal
compartments at 0.41 ± 0.09 mm/hr. The suitability of the polypills was demonstrated using four
clinically relevant drugs for the treatment of CVD, however its application to other therapeutic
regimens is unlimited. The high versatility of the system is expected to be associated with
improved clinical outcomes, by customization of the release profile of drugs to target specific
times to attain peak plasma concentration and to avoid drug-drug interactions in complex
therapies. One limitation of the developed capsule systems is its relatively large size and shape.
Further reduction of the capsules size and a transformation to capsule-like geometry could be

applied to meet FDA guidance for recommended size and shape in order to improve patient acceptability. [50] 263 264 In the clinical setting, bespoke dosage forms can be dispensed as a patient-specific medicine in 265 an extemporaneous setting. Initial stability trials to determine the impact of storage conditions of 266 the developed capsules were conducted over 28 days. In general, no physical change of the 267 capsule structure was observed by visible inspection (Supporting information, Figure S4). 268 Lisinopril and rosuvastatin did not show significant (p>0.05) degradation when stored at 4°C 269 (Supporting information, Table S1), while a decrease in drug content was significant (p>0.05) 270 for indapamide and amlodipine when in PLA capsules. This may be explained by a protective 271 effect of the PVA shell on moisture. The highest degree of degradation of amlodipine when 272 compared with the rest of the model drugs may be due to the high sensitivity of this drug molecule to moisture and light. [51,52] It is possible that the open pores within the architecture of the parallel 273 274 design favoured the penetration of light and moisture and contributed to higher level of 275 degradation in amlodipine chamber. In general, immediate release chambers yielded similar 276 release pattern, whilst extended and delayed release patterns was more sensitive to storage 277 temperature (Supporting information, Figures S5 and S6). 278 To project the clinical implication of using this bespoke drug delivery system for cardiovascular 279 system, a simulation absorption model was developed to study the of effect drug 280 dissolution in drug pharmacokinetics. Validation of the developed models was performed by 281 comparison of the simulated AUC, C_{max} and T_{max} with the observed clinical studies (Supporting 282 information, Table S2). PLA-based capsules showed a clear predictable effect of drug dissolution in the pharmacokinetics profile. C_{max} was proportional with the maximum drug release 283 284 achieved from the in vitro dissolution studies (Figure 8 and Supporting information, Figures 285 S7). PVA-based concentric capsules with different wall thicknesses showed similar good correlation with C_{max} values and T_{max} values proportionally increasing with the drug release time 286 (Figure 9 and Supporting information, Figures S8). Pharmacokinetic parameters values 287 288 obtained for PLA and PVA capsule systems can be found in Supporting information, Table S3

and S4, respectively. The ease of modelling the results highlights the applicability of such a highly modular drug delivery systems to conveniently produced timed drug dose release with "tuned" peak drug plasma concentrations to achieve optimal clinical outcome.

We envisage the employment of such digitised and modular system as part in an integrated healthcare network in the future (**Figure 10**). In such a configuration, patient's data and genomics will feed an artificial intelligent and big data-powered network, where desired target PK profile can be set, tested and refined in multiple cycles to achieve clinical outcome in seamless fashion. The growth of database and number of participants in such integrated system to a critical mass can potentially revolutionise and transform the efficacy, safety and patient-centricity of multiple drug treatments.

3. Conclusions

We present a highly modular multi-compartmental capsule platform of complex structure that accommodates 4 model drugs for bespoke dosing and drug release. A specially developed rapid solidifying fill matrix proved compatible with two biodegradable polymeric shells (PVA and PLA). Two architecture formats, based on digital manipulation of wall thickness and pore sizes, allow a customised release profile for each drug molecule. The novelty of this system resides in employing an established additive manufacturing method with liquid dispensing to achieve a complex multidrug releasing dosage form starting from identical materials. Hence, the platform enables serving large number of patients with a small number of starting materials and relatively low costs. The approach yields minimal migration of the formulation through the shell structure and is stable for 28 days following production (comparable to the usual shelf-life for extemporaneous preparations). While this work provides a proof-of-concept for 4 drug molecules, the reported platform can easily be generalised to a wider spectrum of drug substances that are frequently prescribed together. This work showcases a powerful and economical approach of digital design to provide healthcare staff with a highly adjustable 'polypill' solution, to

314	accommodate	the	increasing	number	of	patients	who	receive	multiple	and	complex	dosing
315	regimens.											

4. Experimental Section

Materials: Lisinopril dihydrate, amlodipine besylate, indapamide and rosuvastatin calcium
were obtained from Kemprotec Ltd (Cumbria, UK). HPLC gradient grade acetonitrile and
methanol were from Fisher Scientific Ltd (Loughborough, UK). Dipyridamole, poly(ethylene
glycol) (PEG) 4000 and alpha-D-Lactose monohydrate ACS reagent grade were purchased from
Thermo-Fisher Scientific (UK). Poly(ethylene glycol) (PEG) 400 was from Merck KGaA
(Darmstadt, Germany). Polyvinyl alcohol (PVA) and Poly(lactic acid) (PLA) filaments were
obtained from MakerBot® Industries (NY, USA). All other chemicals were of analytical grade.
Preparation of the capsule fill matrix: A rapid solidifying shell-compatible hot-fill fluid was
developed. The composition of each drug-loaded fill matrix is detailed in Table 1. The filling
was prepared by dissolving accurately weighed model drug in PEG 400 in a beaker and sonicating
the solution/suspension for 15 min. PEG 4000 was then incorporated in the mixture, which was
then heated in a FD240 binder heating chamber (Tuttlingen, Germany) for 1 hr at 60°C. Following
the complete melting of PEG 4000 and mixed, lactose was suspended and manually mixed to
obtain a uniform paste. Pastes were then maintained at 50° C. A volume of $80~\mu L$ (~ $100~mg$) of
each model drug fill matrix was manually dispensed in each capsule compartment using a 1-mL
GASTIGHT® syringe (Hamilton Company, UK) equipped with a 18 gauge- 6.35 mm length
needle (McMaster-Carr, CA, USA).
3D printing of capsules: Capsule shells of innovative complex architecture were designed using
Autodesk® 3ds Max Design 2016 software version 18.0 (Autodesk, Inc., USA). An oval shape
was chosen to simplify its division into 4 compartments with similar volumes. The capsules (with
0.6 mm walls) were designed with a standard size of 24.1 x 15.1 x 6.26 (X x Y x Z) mm. PVA
capsules were designed with z dimension of 7.46, 8.66 and 9.86 mm for design with inner wall

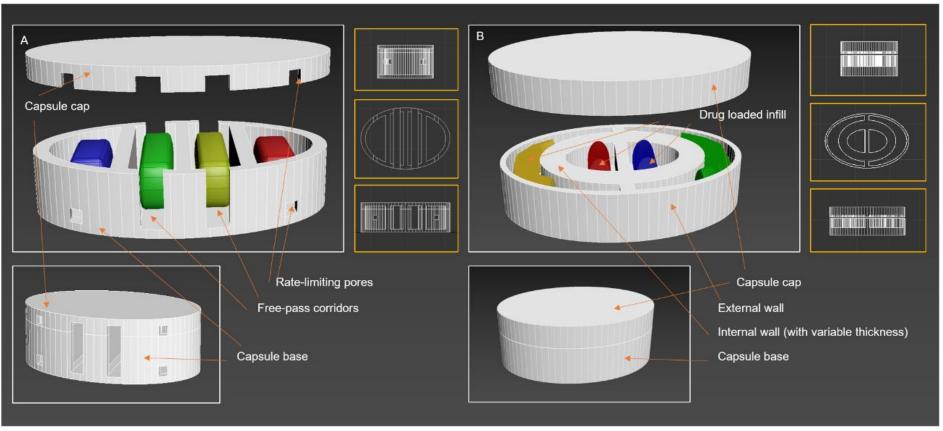
thickness of 1.2, 1.8 and 2.4 mm respectively. Two design formats (**Figure 1**) were adopted to couple extended or delayed release patterns for two model drugs with immediate or extended release for the other two model drugs:

- 1. PLA-based parallel design capsules with immediate release and extended release architecture (Figure 1A). Internal compartments were designed with free-pass corridors (2 mm) to facilitate free access of dissolution media and subsequent rapid dissolution and release of capsule fillings. External compartments were designed with rate-limiting pores. The optimization of the design was performed by assessing the release profile of the drugs using a different number (two or four) of the rate-limiting pores per compartment and different total pore areas (namely, 0.25, 0.49, 0.72 and 1mm²). After optimization, the design with four pores per external compartment (two on each side) and pores areas of 0.25 and 0.49 mm² were selected as a default.
- 2. PVA-based concentric design capsules with variable shell thicknesses (Figure 1B) with extended and delayed release system architecture. External walls of the capsule were designed with a 0.6-mm thickness to provide an extended release. Capsules with top, bottom and internal walls were designed with various wall thicknesses (namely 0.6, 1.2, 1.8 or 2.4 mm) in order to achieve a delayed drug release profile from the internal compartments.

Each design was split into two complementary objects: base and cap. 3D printing of both capsule formats was done using a Makerbot Replicator 2X (Makerbot Industries, LLC, USA) at nozzle and platform temperatures of 200 °C and 50 °C, respectively. Capsule shells were divided in two stereolithography (.stl) files format correspondent to the base and cap of the capsule. 3D printing of the capsule shells was performed without using removable supports and took a maximum of 10 min. Each capsule was fabricated in three steps: i) 3D printing of the bottom portion of the design (base), ii) manual capsule filling as detailed in the previous section, and iii) 3D printing of complementary top part (cap). The printing of cap was set using the identical x-y position on the

370	sealing materials or process were used in the process.
371	Compatibility of the hot-filling matrix with the capsule shell: Fill-matrix compatibility with PLA
372	and PVA shells was studied by assessing the developed fast solidifying fills using a fluorescent
373	molecule (dipyridamole). Capsule fillings (as described above) and dipyridamole solution in PEG
374	400 (control) were dispensed in PLA and PVA capsules and visualised in a NOVEX B-range
375	microscope after 0, 0.5, 2 and 24 hrs. Samples were prepared using the concentration
376	correspondent to the model drug with lowest dose (indapamide), 31.25 mg/mL and 2.5% for the
377	PEG 400 and capsule filling samples, respectively. The capsules were kept at room temperature
378	throughout the experiment and images were obtained using Image focus v3.0.0.1 software to
379	visualise integrity.
380 381	High performance liquid chromatography (HPLC): Drug content and dissolution tests samples were analysed by HPLC, using a method that has been described in a previous study. ^[53]
382	Thermal analysis: Thermogravimetric analysis (TGA) analysis was performed on a TGA Q500
383	(TA Instruments, Elstree, Hertfordshire, UK) and samples of the raw materials and the capsule
384	fill matrix were run in triplicate. Each sample (approximately 10mg) was heated at a rate of
385	10 °C/min from 25 to 500 °C with a nitrogen purge of 40:60 mL/min for sample: furnace
386	respectively. Differential Scanning Calorimetry (DSC) analysis was conducted on a DSC Q2000
387	(TA Instruments, Elstree, UK). Samples (~10 mg) of the raw materials and the capsule fill matrix
388	were analysed in triplicate using T-zero hermetic pans. Each sample was scanned from -50 to
389	200 °C at 10 °C/min using a nitrogen purge of 50 mL/min. Data obtained from both TGA and
390	DSC were analysed with TA Universal analysis software v4.5A (TA Instruments, Elstree, UK).
391	
392	Powder X-ray diffractometry (XRD): Powder XRD analysis of the raw materials and capsule
393	filling was carried out using an X-ray diffractometer, D2 Phaser with Lynxeye (Bruker,
394	Germany). Each sample was scanned from $2\Theta = 5^{\circ}$ to 50° with a 0.01° step width and a 1.25 sec

printing plate and at z-level equivalent to the height of the complementary base. No additional


990	time count. The divergence shi and scatter shi were 1 min and 0.0 min, respectively. The
396	wavelength of the X-ray was 0.154 nm using a Cu source, a voltage of 30 kV and a filament
397	emission of 10 mA.
398	
399	Rheological studies of the capsule fill matrix: Rheology studies were performed on the capsule
400	fills using an Anton Paar Shear Rheometry Physica MCR 301 (Graz, Austria) with 25mm parallel
401	plates, using a 0.5mm gap distance in oscillation mode. Linear viscoelastic region (LVR) was
402	studied with 0.5% strain amplitude. Samples were tested in triplicate using an amplitude sweep
103	at an angular frequency range from 0.1 to 100 rad/s and angular frequency of 10 rad/s.
104	Temperatures were set at 40 and 50°C (dispensing temperature) and readings were collected every
405	5 sec.
106	Solubility parameter: Hansen solubility parameters were calculated using HSPiP v5.0.08
107	software. The canonical simplified molecular-input line-entry system (SMILES) of the
408	compounds as stated in PubChem database was used to calculate the solubility parameters using
109	group contribution method $^{[54]}$. It is worth noting that PEG 400 and PEG 4000 have identical
110	SMILES and therefore have identical solubility parameter values.
111	Stability assessment: The stability of the developed formulation was assessed in terms of
112	compatibility with the capsule shells, drug content and dissolution profile. The drug content
113	(w/w%) of each capsule filling was calculated by comparing the recovered amount with the
114	theorical amount.
115	Stability at processing conditions: Stability of the model drugs at the processing conditions was
116	analysed. Drug content was assessed by heating the drug-loaded capsule fillings at 50 °C in a
117	FD240 Binder heating chamber (Tuttlingen, Germany). Samples were collected at the time points
118	0 and 24 hrs, filtered through an Econofltr 0.2 μm syringe filter (Agilent Technologies Ltd.,
119	Cheadle, UK) and analysed in triplicate by the HPLC method mentioned above. ^[53]

420	a.	Accelerated stability study: Accelerated stability of the 3D printed capsules (Sequence I
421		PLA-based capsules with 0.49 mm ² pores and Sequence I PVA-based capsules with 1.8
422		mm wall thickness) was performed according to ICH guidelines for one month, at 4 °C,
423		$30~^{\circ}\text{C}/$ 65% RH and $40~^{\circ}\text{C}$ / 75% RH. Capsules were individually stored in high-density
424		polyethylene bottles and analysed in triplicate in terms of visual assessment of physical
425		capsule structure, drug content and dissolution profile (see above). For drug content
426		analysis, PVA capsules were placed in 800 mL of water and sonicated until complete
427		dissolution, followed by the addition of 200 mL of acetonitrile and further sonication for
428		1 hr. PLA capsules were firstly dissolved in 200 mL of acetonitrile followed addition of
429		800 mL water and sonication for 1 hr. For amlodipine analysis, 1 mм EDTA was added
430		the solution. The solutions were then filtered through an Econofltr 0.2 μm syringe filter
431		(Agilent Technologies Ltd., Cheadle, UK) and analysed by HPLC as described above.
432	Scanni	ng electronic microscopy (SEM) The thickness of the inner wall of the PVA concentric
433	capsule	es and the pores of the PLA capsules were analysed with a JCM-6000 plus NeoScope TM
434	micros	cope (Jeol, Tokyo, Japan) at 10 kV. Prior to imaging, samples were gold coated under
435	vacuun	n for 2 min with a JFC-1200 Fine Coater (Jeol, Tokyo, Japan).
436	In vitro	o dissolution tests. The dissolution tests for 3D printed capsules were performed on an
437	Erweka	a DT600 USPII dissolution test apparatus (Heusenstamm, Germany). The tests were run at
438	37 °C v	with a paddle rotation speed of 50 rpm, under sink conditions. The capsules were tested in
439	750 ml	L of 0.1 _M HCl (pH 1.2) for 2 hrs, followed by pH 6.8 phosphate buffer for 4 hrs (with
440	additio	n of 250 mL of tribasic phosphate solution 0.215 M) and then pH 7.4 phosphate buffer for
441	additio	nal 18 hrs. The paddles and the water bath were sealed with PTFE-coated glass cloth
442	adhesiv	we tape (Viking Industrial Products, Keighley, UK) and foil, respectively, and the
443	dissolu	tion assessment was performed in a dark room, to prevent degradation of amlodipine. Each
444	experir	ment was performed in repetitions of six and samples were manually collected (4 mL),
445	which	was replaced and filtered with an Econofltr 0.2 μm syringe filter (Agilent Technologies
446	Ltd., C	headle, UK). Aliquots were collected at the time points: 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10,

447	12 and 24 hrs and analysed by the developed HPLC method previously described. The period of
448	24 hours was selected based on average transit time of non-disintegrating tablet in the
449	gastrointestinal tract. ^[55]
450	With the assumption that a detectable drug concentration is reached when the capsule wall is
451	completely dissolved, the erosion rate (mm/hrs) was estimated using the following equation:
452	
453	Erosion rate = $d (mm)/t_{lag} (hrs)$
454	Where (d) is the thickness of the wall, and (t $_{lag}$) is the lag time before the onset of drug release
455	In silico simulation The absorption profile simulation for each drug was developed using
456	Gastroplus® v9.7 (Simulation Plus, Lancaster, CA, USA). For the 'compound' and
457	'pharmacokinetics' models, input data included experimental data (dissolution profile,
458	permeability and solubility) and data obtained from literature. When precise compound
459	parameters values were not available, parameter estimation was performed by the software.
460	Human physiology under fasted state mode was designated and default values were used.
461	The physicochemical properties and ADME parameters for each drug were obtained from
462	literature (Supporting information, Table S5).
463	Statistical analysis Statistical analysis of the results was done with independent t-test using SPSS
464	software (22.0.2). Differences in the results below the probability level of p<0.05 were considered
465	significant.

- 468 [1] C.J. Charlesworth, E. Smit, D.S. Lee, F. Alramadhan, M.C. Odden, J. Gerontol. A. Biol. Sci.
- 469 *Med. Sci.* **2015**, 70, 989.
- 470 [2] B. Guthrie, B. Makubate, V. Hernandez-Santiago, T. Dreischulte, *BMC Med*, **2015**, 13, 15.
- 471 [3] E.R. Hajjar, A.C. Cafiero, J.T. Hanlon, Am. J. Geriatr. Pharmacother. 2007, 5, 345.
- 472 [4] EHN, European Cardiovascular Disease: Statistics 2017 edition, in: S. Løgstrup (Ed.),
- 473 Belgium, 2017.
- 474 [5] NICE, Cardiovascular disease risk assessment and prevention,
- 475 https://bnf.nice.org.uk/treatment-summary/cardiovascular-disease-risk-assessment-and-
- 476 prevention.html, accessed: 8/2019.
- 477 [6] D. Cimmaruta, N. Lombardi, C. Borghi, G. Rosano, F. Rossi, A. Mugelli, Int. J. Cardiol.
- **2018**, 252, 181.
- 479 [7] S. Assari, M. Bazargan, *Pharmacy (Basel)*, **2019**, 7, 14.
- 480 [8] S. Leszek, J. Jadwiga, B.-S. Agnieszka, *Ars Pharmaceutica*, **2016**, 57, 137.
- 481 [9] A. Atreja, N. Bellam, S.R. Levy, *MedGenMed*, 2005, 7,4.
- 482 [10] PillPack, Pill Pack, https://www.pillpack.com/how-it-works, accessed: 7/2019.
- 483 [11] NIHR, My medication passport, http://clahrc-northwestlondon.nihr.ac.uk/resources/mmp,
- 484 accessed: 7/2019.
- 485 [12] R.L. Padilla, S. Byers-Connor, H.L. Lohmam, Occupational Therapy with Elders: Strategies
- 486 for the Cota., Second ed., Elsevier, USA, 2012.
- 487 [13] A.D. Black, J. Car, C. Pagliari, C. Anandan, K. Cresswell, T. Bokun, B. McKinstry, R.
- 488 Procter, A. Majeed, A. Sheikh, *PLoS Med.***2011**, 8, 1000387.
- 489 [14] J.M. Castellano, H. Bueno, V. Fuster, *Int. J. Cardiol.* **2015**, 201, 31027.
- 490 [15] S.E. Moulton, G.G. Wallace, J. Control. Release. 2014, 193, 27.
- 491 [16] M. Alomari, F.H. Mohamed, A.W. Basit, S. Gaisford, *J. Pharm.* **2015**, 494, 56.
- 492 [17] A. Goyanes, F. Fina, A. Martorana, D. Sedough, S. Gaisford, A.W. Basit, Int. J. Pharm.
- **493 2017**, 527, 21.
- 494 [18] K. Ilyes, N.K. Kovacs, A. Balogh, E. Borbas, B. Farkas, T. Casian, G. Marosi, I. Tomuta,
- 495 Z.K. Nagy, Eur. J. Pharm. Sci. 2019, 129, 110.
- 496 [19] B. Arafat, N. Qinna, M. Cieszynska, R.T. Forbes, M.A. Alhnan, Eur. J. Pharm. Biopharm.
- **2018**, 128, 282.
- 498 [20] N. Scoutaris, S.A. Ross, D. Douroumis, 3D Printed "Starmix" Drug Loaded Dosage Forms
- 499 for Paediatric Applications, *Pharm. Res.* **2018**, 35, 17.
- 500 [21] M. Sadia, A. Isreb, I. Abbadi, M. Isreb, D. Aziz, A. Selo, P. Timmins, M.A. Alhnan, Eur. J.
- 501 *Pharm. Sci.* **2018**, 123, 484.
- 502 [22] C.I. Gioumouxouzis, A. Baklavaridis, O.L. Katsamenis, C.K. Markopoulou, N.
- Bouropoulos, D. Tzetzis, D.G. Fatouros, Eur. J. Pharm. Sci. 2018, 120, 40.
- 504 [23] T. Tagami, K. Fukushige, E. Ogawa, N. Hayashi, T. Ozeki, *Biol. Pharm. Bull.* **2017**, 40, 357.
- 505 [24] X. Chai, H. Chai, X. Wang, J. Yang, J. Li, Y. Zhao, W. Cai, T. Tao, X. Xiang, Sci. Rep.
- **2017**, 7, 17.
- 507 [25] B. Arafat, M. Wojsz, A. Isreb, R.T. Forbes, M. Isreb, W. Ahmed, T. Arafat, M.A. Alhnan,
- 508 Eur. J. Pharm. Sci. **2018**, 118, 191.
- 509 [26] A. Melocchi, F. Parietti, G. Loreti, A. Maroni, A. Gazzaniga, L. Zema, J. Drug Deliv. Sci.
- 510 Technol. 2015, 30.
- 511 [27] D. Smith, Y. Kapoor, A. Hermans, R. Nofsinger, F. Kesisoglou, T.P. Gustafson, A. Procopio,
- 512 Int. J. Pharm. 2018, 550, 418.

- 513 [28] G. Matijašić, M. Gretić, J. Vinčić, A. Poropat, L. Cuculić, T. Rahelić, J. Drug Deliv. Sci.
- 514 *Technol.* 2019, 52, 677.
- 515 [29] A. Maroni, A. Melocchi, F. Parietti, A. Foppoli, L. Zema, A. Gazzaniga, J. Control. Release.
- **2017**, 268, 10.
- 517 [30] D.M. Smith, Y. Kapoor, G.R. Klinzing, A.T. Procopio, J. Pharm. 2018, 544, 21.
- 518 [31] T.C. Okwuosa, C. Soares, V. Gollwitzer, R. Habashy, P. Timmins, M.A. Alhnan, Eur. J.
- 519 *Pharm. Sci.* **2018**, 118, 134.
- 520 [32] X.L. Jiang, P. Zhao, J. Barrett, L. Lesko, S. Schmidt, CPT: pharmacometrics & systems
- 521 *pharmacology*, **2018**, 2, 80.
- 522 [33] P.N. Morcos, Y. Cleary, C. Sturm-Pellanda, E. Guerini, M. Abt, M. Donzelli, F. Vazvaei, B.
- 523 Balas, N. Parrott, L. Yu, J. Clin. Pharmacol. 2018, 58, 1618.
- 524 [34] M.A. Rahman, A. Hussain, M.S. Hussain, M.A. Mirza, Z. Iqbal, Drug. Dev. Ind. Pharm.
- **2013**, 39, 1.
- 526 [35] S.S. Hong, S.H. Lee, Y.J. Lee, S.J. Chung, M.H. Lee, C.K. Shim, *J. Control. Release.* 1998,
- 527 51, 185.
- 528 [36] P. Augustijns, M. Brewster, Solvent Systems and Their Selection in Pharmaceutics and
- 529 *Biopharmaceutics*, Springer/AAPS Press, New York, **2007**.
- 530 [37] F.H. Falqi, O.A. Bin-Dahman, M. Hussain, M.A. Al-Harthi, *Int. J. Polym. Sci.* **2018**, 10.
- 531 [38] L.Y. Lim, L.S.C. Wan, *Drug. Dev. Ind. Pharm.* **1994**, 1007.
- 532 [39] O. Martin, L. Avérous, *Polymer*. **2001**, 42, 6209.
- 533 [40] R. Eyjolfsson, *Drug. Dev. Ind. Pharm.* **1998**, 24, 797.
- 534 [41] T.J. DiFeo, J.E. Shuster, Academic Press, Indapamide. In: H. G. Brittain (Ed.) Analytical
- 535 Profiles of Drug Substances and Excipients. Academic Press, USA, 1994.
- 536 [42] N. Kulkarni, N. Ranpise, G. Mohan, *Trop. J. Pharm. Res.* **2015**, 14, 575.
- 537 [43] R. Dahima, A. Pachori, S. Netam, *Int. J. Chemtech. Res.* **2010**, 2.
- 538 [44] D.P. Ip, J.D. DeMarco, M.A. Brooks, Lisinopril, in: H.G. Brittain (Ed.) Analytical Profiles
- of Drug Substances and Excipients, Academic Press, 1992, pp. 233-276.
- 540 [45] D.T. Manallack, *Perspect. Medicin. Chem.* **2007**, 1, 25.
- 541 [46] M.V. Varma, C.J. Rotter, J. Chupka, K.M. Whalen, D.B. Duignan, B. Feng, J. Litchfield,
- 542 T.C. Goosen, A.F. El-Kattan, *Mol. Pharm.* **2011**, 8, 1303.
- 543 [47] C.G. Wilson, N. Washington, *Drug Dev. Ind. Pharm.* 2008, 14,211.
- 544 [48] S. Vaddiraju, Y. Wang, L. Qiang, D.J. Burgess, F. Papadimitrakopoulos, Anal. Chem. 2012,
- 545 84, 8837.
- 546 [49] J. Zhao, X. Xu, M. Wang, L. Wang, Dissolution Technol. 2018, 25, 24.
- 547 [50] Center for Drug Evaluation and Research (CDER), FDA, Size, Shape, and Other Physical
- 548 Attributes of Generic Tablets and Capsules Guidance for Industry,
- 549 https://www.fda.gov/media/87344/download, accessed: 03/2020
- 550 [51] L. Malcolm, Accelerated Predictive Stability (APS), 2018, 287.
- 551 [52] F. Elisa, A. Angelo, G. Silvia, *Int. J. Pharm.* **2007**, 352, 197.
- 552 [53] B.C. Pereira, A. Isreb, R.T. Forbes, F. Dores, R. Habashy, J.B. Petit, M.A. Alhnan, E.F. Oga,
- 553 Eur. J. Pharm. Biopharm. **2019**, 135, 94.
- 554 [54] C. M. Hansen, Hansen Solubility Parameters, A User's Handbook, 2nd edition CRC Press,
- 555 **2007, 1-27**.
- 556 [55] G. Sathyan, S. Hwang, S.K. Gupta, *Int. J. Pharm.* **2000**, 204, 47.

Figure 1 Schematic images of PVA capsules with increased thickness of **(A1)** inner wall and **(A2)** base and cap layers. Images of the PVA concentric design capsules **(A3)** 3D printed base, **(A4)** capsule filling, **(A5)** sealed capsules. **(A6)** SEM images of the inner wall with increased thickness. Images of PLA parallel design capsules **(B1)** printed base, **(B2)** capsule filling, **(B3)** sealed capsules. Detailed images and correspondent SEM pictures of rate-limiting pores with **(B4)** 0.25 mm² and **(B5)** 0.49 mm² areas and **(B6)** corridors from PLA capsules.

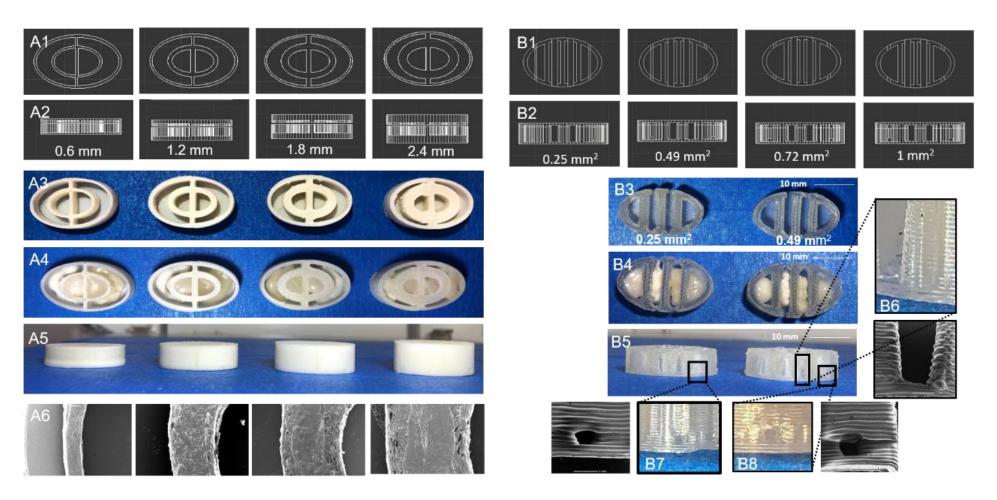


Figure 2 Rendered images of computer-aided design (CAD) (Autodesk 3DS Max) of capsule base and cap of (A) PVA capsules of concentric compartments design and varying internal wall thicknesses, (B) PLA capsules of parallel compartments with free-pass corridors and rate-limiting pores and

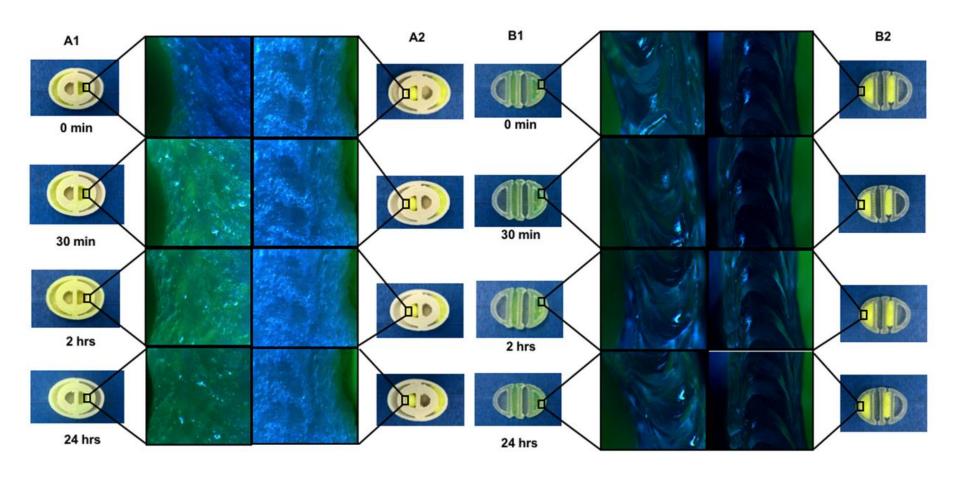


Figure 3 Images of (A1) PVA and (B1) PLA shells with dipyridamole PEG and (A2) PVA and (B2) PLA shells with dipyridamole-loaded capsule filling.

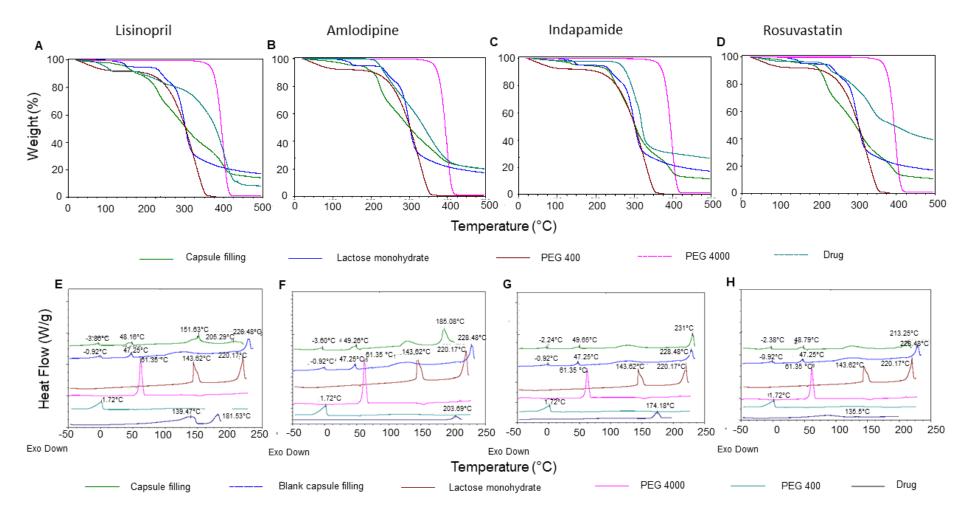
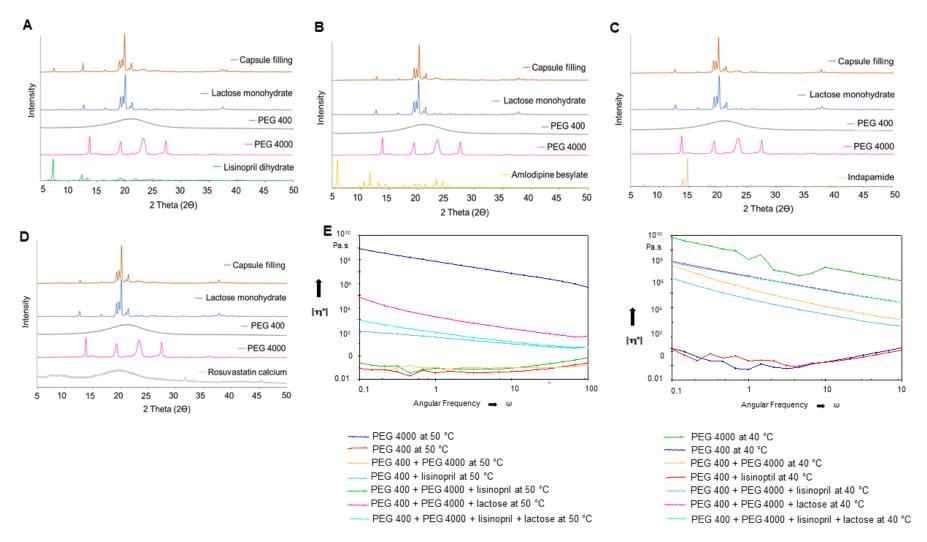



Figure 4 TGA profiles and DSC scans of raw materials and capsule filling of (A/E) lisinopril, (B/F) amlodipine, (C/G) indapamide and (D/H) rosuvastatin, respectively.

Figure 5 Powder XRD patterns of raw materials and capsule filling of (**A**) lisinopril, (**B**) amlodipine, (**C**) indapamide and (**D**) rosuvastatin. Complex viscosity of PEG 400, PEG 4000 and their mixtures with and without lactose and with lisinopril at (**E**) 50 °C and (**F**) 40 °C.

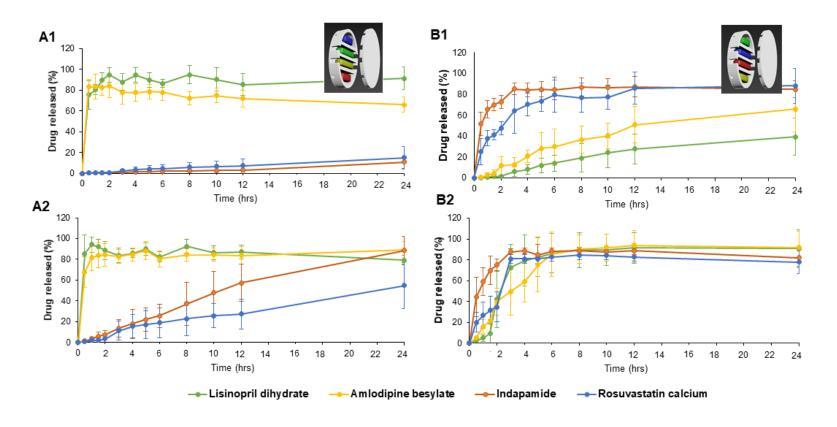


Figure 6 In vitro drug release of PLA parallel design capsules with (A1 and B1) 0.25 mm² pores and (A2 and B2) 0.49 mm² pores (n=6).

Figure 7 *In vitro* drug release of PVA concentric design capsules with (A1 and B1) 0.6 mm, (A2 and B2) 1.2 mm, (A3 and B3) 1.8 mm and (A4 and B4) 2.4 mm inner wall thickness (n=6).

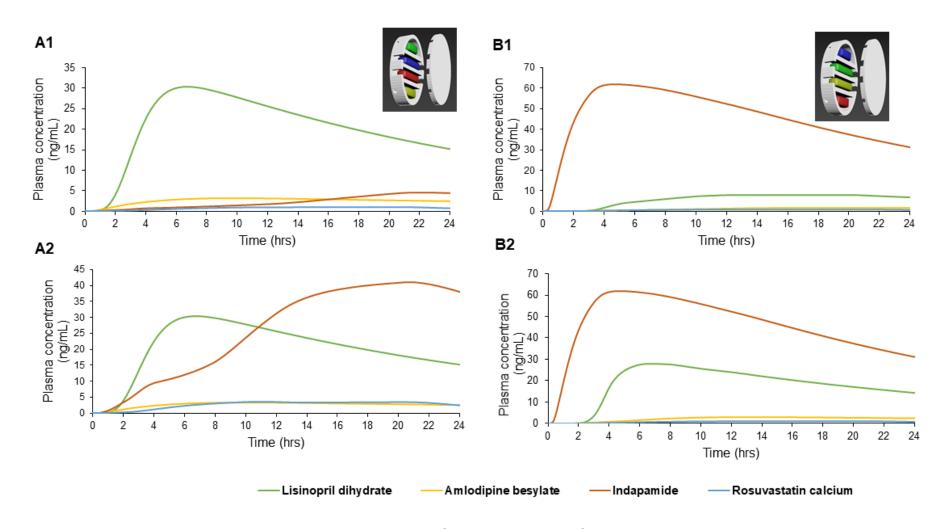


Figure 8 Simulated mean plasma profiles of PLA capsules with 0.25 mm² (A1/B1) and 0.49 mm² (A2/B2) pores PLA capsules, respectively.

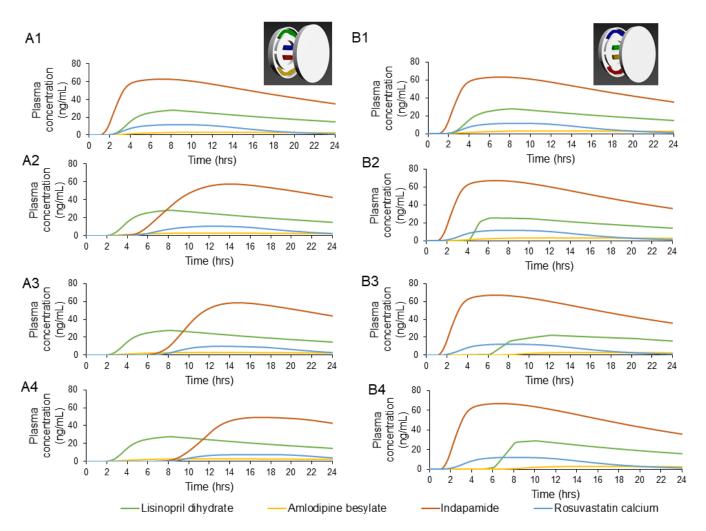
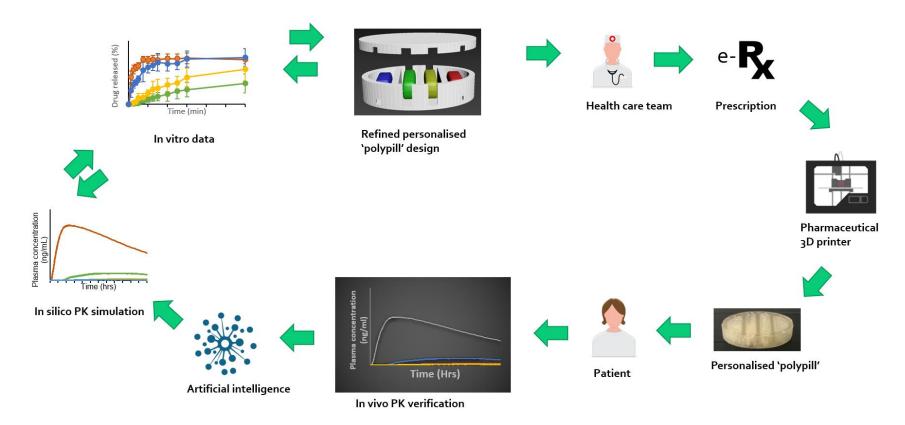



Figure 9 Simulated mean plasma profiles of PVA capsules with 0.6 mm (A1/B1), 1.2 mm (A2/B2), 1.8 mm (A3/B3) and 2.4 mm (A4/B4) wall thickness.

Figure 10 Schematic diagram of future scenario for integrated electronic healthcare system that employ Pharmaceutical 3D printer. The patient's medical information and genomic specifics will be fed in artificial intelligence system, where target PK simulation will be set. Computer software will help to generate an in vitro plasma profile and a tailored 'polypill' design will be built. Healthcare team will approve a corresponding e-prescription and a personalised polypill will be 3D printed and dispensed to the patient. The PK data from patients to improve and maintain target plasma exposure of multiple drugs. The increased number of repeated cycles as well as number participants will improve the accuracy of the system.

Table 1. Composition of hot-filled capsule contents.

Drug-loaded capsule filling	Ingredients (w/w%)							
	Lisinopril	Amlodipine	Indapamide	Rosuvastatin	PEG 4000	PEG 400	Lactose	
	dihydrate	besylate	besylate		calcium		monohydrate	
Lisinopril dihydrate	10%	-	-	-	10%	30%	50%	
Amlodipine besylate	-	5%	-	-	10%	30%	55%	
Indapamide	-	-	2.5%	-	10%	30%	57.5%	
Rosuvastatin calcium	-	-	-	10%	10%	30%	50%	

Table 2. Solubility parameters in MPa^{1/2} and components.

Compound	Solubility 1	parameters			
	δD	δP	δН	δT	
Rosuvastatin	18.7	11.8	10	24.3	
Lisinopril	17.1	8.2	9.1	21	
Indapamide	21.6	18.9	9.6	30.2	
Amlodipine	18	4.3	7.2	19.8	
PEG	19.5	13.1	20.3	31	