9 research outputs found

    Characteristics of meiofauna in extreme marine ecosystems: a review

    Get PDF
    Extreme marine environments cover more than 50% of the Earth’s surface and offer many opportunities for investigating the biological responses and adaptations of organisms to stressful life conditions. Extreme marine environments are sometimes associated with ephemeral and unstable ecosystems, but can host abundant, often endemic and well-adapted meiofaunal species. In this review, we present an integrated view of the biodiversity, ecology and physiological responses of marine meiofauna inhabiting several extreme marine environments (mangroves, submarine caves, Polar ecosystems, hypersaline areas, hypoxic/anoxic environments, hydrothermal vents, cold seeps, carcasses/sunken woods, deep-sea canyons, deep hypersaline anoxic basins [DHABs] and hadal zones). Foraminiferans, nematodes and copepods are abundant in almost all of these habitats and are dominant in deep-sea ecosystems. The presence and dominance of some other taxa that are normally less common may be typical of certain extreme conditions. Kinorhynchs are particularly well adapted to cold seeps and other environments that experience drastic changes in salinity, rotifers are well represented in polar ecosystems and loriciferans seem to be the only metazoan able to survive multiple stressors in DHABs. As well as natural processes, human activities may generate stressful conditions, including deoxygenation, acidification and rises in temperature. The behaviour and physiology of different meiofaunal taxa, such as some foraminiferans, nematode and copepod species, can provide vital information on how organisms may respond to these challenges and can provide a warning signal of anthropogenic impacts. From an evolutionary perspective, the discovery of new meiofauna taxa from extreme environments very often sheds light on phylogenetic relationships, while understanding how meiofaunal organisms are able to survive or even flourish in these conditions can explain evolutionary pathways. Finally, there are multiple potential economic benefits to be gained from ecological, biological, physiological and evolutionary studies of meiofauna in extreme environments. Despite all the advantages offered by meiofauna studies from extreme environments, there is still an urgent need to foster meiofauna research in terms of composition, ecology, biology and physiology focusing on extreme environments

    Timing of massive 'Fleuve Manche' discharges over the last 350 kyr: insights into the European ice-sheet oscillations and the European drainage network from MIS 10 to 2

    Get PDF
    International audienceContinuous high-resolution mass accumulation rates (MAR) and X-ray fluorescence (XRF) measurements from marine sediment records in the Bay of Biscay (NE Atlantic) have allowed the determination of the timing and the amplitude of the 'Fleuve Manche' (Channel River) discharges during glacial stages MIS 10, MIS 8, MIS 6 and MIS 4-2. These results have yielded detailed insight into the Middle and Late Pleistocene glaciations in Europe and the drainage network of the western and central European rivers over the last 350 kyr. This study provides clear evidence that the 'Fleuve Manche' connected the southern North Sea basin with the Bay of Biscay during each glacial period and reveals that 'Fleuve Manche' activity during the glaciations MIS 10 and MIS 8 was significantly less than during MIS 6 and MIS 2. We correlate the significant 'Fleuve Manche' activity, detected during MIS 6 and MIS 2, with the extensive Saalian (Drenthe Substage) and the Weichselian glaciations, respectively, confirming that the major Elsterian glaciation precedes the glacial MIS 10. In detail, massive 'Fleuve Manche' discharges occurred at ca 155 ka (mid-MIS 6) and during Termination I, while no significant discharges are found during Termination II. It is assumed that a substantial retreat of the European ice sheet at ca 155 kyr, followed by the formation of ice-free conditions between the British Isles and Scandinavia until Termination II, allowed meltwater to flow northwards through the North Sea basin during the second part of the MIS 6. We assume that this glacial pattern corresponds to the Warthe Substage glacial maximum, therefore indicating that the data presented here equates to the Drenthe and the Warthe glacial advances at ca 175-160 ka and ca 150-140 ka, respectively. Finally, the correlation of our records with ODP site 980 reveals that massive 'Fleuve Manche' discharges, related to partial or complete melting of the European ice masses, were synchronous with strong decreases in both the rate of deep-water formation and the strength of the Atlantic thermohaline circulation. 'Fleuve Manche' discharges over the last 350 kyr probably participated, with other meltwater sources, in the collapse of the thermohaline circulation by freshening the northern Atlantic surface water

    Age determinaton and age model of sediments from the Bay of Biscay

    No full text
    Continuous high-resolution mass accumulation rates (MAR) and X-ray fluorescence (XRF) measurements from marine sediment records in the Bay of Biscay (NE Atlantic) have allowed the determination of the timing and the amplitude of the 'Fleuve Manche' (Channel River) discharges during glacial stages MIS 10, MIS 8, MIS 6 and MIS 4-2. These results have yielded detailed insight into the Middle and Late Pleistocene glaciations in Europe and the drainage network of the western and central European rivers over the last 350 kyr. This study provides clear evidence that the 'Fleuve Manche' connected the southern North Sea basin with the Bay of Biscay during each glacial period and reveals that 'Fleuve Manche' activity during the glaciations MIS 10 and MIS 8 was significantly less than during MIS 6 and MIS 2. We correlate the significant 'Fleuve Manche' activity, detected during MIS 6 and MIS 2, with the extensive Saalian (Drenthe Substage) and the Weichselian glaciations, respectively, confirming that the major Elsterian glaciation precedes the glacial MIS 10. In detail, massive 'Fleuve Manche' discharges occurred at ca 155 ka (mid-MIS 6) and during Termination I, while no significant discharges are found during Termination II. It is assumed that a substantial retreat of the European ice sheet at ca 155 kyr, followed by the formation of ice-free conditions between the British Isles and Scandinavia until Termination II, allowed meltwater to flow northwards through the North Sea basin during the second part of the MIS 6. We assume that this glacial pattern corresponds to the Warthe Substage glacial maximum, therefore indicating that the data presented here equates to the Drenthe and the Warthe glacial advances at ca 175-160 ka and ca 150-140 ka, respectively. Finally, the correlation of our records with ODP site 980 reveals that massive 'Fleuve Manche' discharges, related to partial or complete melting of the European ice masses, were synchronous with strong decreases in both the rate of deep-water formation and the strength of the Atlantic thermohaline circulation. 'Fleuve Manche' discharges over the last 350 kyr probably participated, with other meltwater sources, in the collapse of the thermohaline circulation by freshening the northern Atlantic surface water

    Characteristics of meiofauna in extreme marine ecosystems: a review

    No full text
    Extreme marine environments cover more than 50% of the Earth’s surface and offer many opportunities for investigating the biological responses and adaptations of organisms to stressful life conditions. Extreme marine environments are sometimes associated with ephemeral and unstable ecosystems, but can host abundant, often endemic and well-adapted meiofaunal species. In this review, we present an integrated view of the biodiversity, ecology and physiological responses of marine meiofauna inhabiting several extreme marine environments (mangroves, submarine caves, Polar ecosystems, hypersaline areas, hypoxic/anoxic environments, hydrothermal vents, cold seeps, carcasses/sunken woods, deep-sea canyons, deep hypersaline anoxic basins [DHABs] and hadal zones). Foraminiferans, nematodes and copepods are abundant in almost all of these habitats and are dominant in deep-sea ecosystems. The presence and dominance of some other taxa that are normally less common may be typical of certain extreme conditions. Kinorhynchs are particularly well adapted to cold seeps and other environments that experience drastic changes in salinity, rotifers are well represented in polar ecosystems and loriciferans seem to be the only metazoan able to survive multiple stressors in DHABs. As well as natural processes, human activities may generate stressful conditions, including deoxygenation, acidification and rises in temperature. The behaviour and physiology of different meiofaunal taxa, such as some foraminiferans, nematode and copepod species, can provide vital information on how organisms may respond to these challenges and can provide a warning signal of anthropogenic impacts. From an evolutionary perspective, the discovery of new meiofauna taxa from extreme environments very often sheds light on phylogenetic relationships, while understanding how meiofaunal organisms are able to survive or even flourish in these conditions can explain evolutionary pathways. Finally, there are multiple potential economic benefits to be gained from ecological, biological, physiological and evolutionary studies of meiofauna in extreme environments. Despite all the advantages offered by meiofauna studies from extreme environments, there is still an urgent need to foster meiofauna research in terms of composition, ecology, biology and physiology focusing on extreme environments

    Extracorporeal membrane oxygenation network organisation and clinical outcomes during the COVID-19 pandemic in Greater Paris, France: a multicentre cohort study

    No full text
    Erratum inCorrection to Lancet Respir Med 2021; published online April 19. https://doi.org/10.1016/S2213-2600(21)00096-5.International audienceBackground: In the Île-de-France region (henceforth termed Greater Paris), extracorporeal membrane oxygenation (ECMO) for severe acute respiratory distress syndrome (ARDS) was considered early in the COVID-19 pandemic. We report ECMO network organisation and outcomes during the first wave of the pandemic.Methods: In this multicentre cohort study, we present an analysis of all adult patients with laboratory-confirmed SARS-CoV-2 infection and severe ARDS requiring ECMO who were admitted to 17 Greater Paris intensive care units between March 8 and June 3, 2020. Central regulation for ECMO indications and pooling of resources were organised for the Greater Paris intensive care units, with six mobile ECMO teams available for the region. Details of complications (including ECMO-related complications, renal replacement therapy, and pulmonary embolism), clinical outcomes, survival status at 90 days after ECMO initiation, and causes of death are reported. Multivariable analysis was used to identify pre-ECMO variables independently associated with 90-day survival after ECMO.Findings: The 302 patients included who underwent ECMO had a median age of 52 years (IQR 45-58) and Simplified Acute Physiology Score-II of 40 (31-56), and 235 (78%) of whom were men. 165 (55%) were transferred after cannulation by a mobile ECMO team. Before ECMO, 285 (94%) patients were prone positioned, median driving pressure was 18 cm H2O (14-21), and median ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen was 61 mm Hg (IQR 54-70). During ECMO, 115 (43%) of 270 patients had a major bleeding event, 27 of whom had intracranial haemorrhage; 130 (43%) of 301 patients received renal replacement therapy; and 53 (18%) of 294 had a pulmonary embolism. 138 (46%) patients were alive 90 days after ECMO. The most common causes of death were multiorgan failure (53 [18%] patients) and septic shock (47 [16%] patients). Shorter time between intubation and ECMO (odds ratio 0·91 [95% CI 0·84-0·99] per day decrease), younger age (2·89 [1·41-5·93] for ≤48 years and 2·01 [1·01-3·99] for 49-56 years vs ≥57 years), lower pre-ECMO renal component of the Sequential Organ Failure Assessment score (0·67, 0·55-0·83 per point increase), and treatment in centres managing at least 30 venovenous ECMO cases annually (2·98 [1·46-6·04]) were independently associated with improved 90-day survival. There was no significant difference in survival between patients who had mobile and on-site ECMO initiation.Interpretation: Beyond associations with similar factors to those reported on ECMO for non-COVID-19 ARDS, 90-day survival among ECMO-assisted patients with COVID-19 was strongly associated with a centre's experience in venovenous ECMO during the previous year. Early ECMO management in centres with a high venovenous ECMO case volume should be advocated, by applying centralisation and regulation of ECMO indications, which should also help to prevent a shortage of resources
    corecore