14 research outputs found

    Peak strain magnitudes and rates in the tibia exceed greatly those in the skull: An in vivo study in a human subject

    Get PDF
    Bone mass and architecture are the result of a genetically determined baseline structure, modified by the effect of internal hormonal/biochemical regulators and the effect of mechanical loading. Bone strain is thought to drive a feedback mechanism to regulate bone formation and resorption to maintain an optimal, but not excessive mass and organisation of material at each skeletal location. Because every site in the skeleton has different functions, we have measured bone strains induced by physiological and more unusual activities, at two different sites, the tibia and cranium of a young human male in vivo. During the most vigorous activities, tibial strains were shown to exceed 0.2%, when ground reaction exceeded 5 times body weight. However in the skull the highest strains recorded were during heading a heavy medicine/exercise ball where parietal strains were up to 0.0192%. Interestingly parietal strains during more physiological activities were much lower, often below 0.01%. Strains during biting were not dependent upon bite force, but could be induced by facial contortions of similar appearance without contact between the teeth. Rates of strain change in the two sites were also very different, where peak tibial strain rate exceeded rate in the parietal bone by more than 5 fold. These findings suggest that the skull and tibia are subject to quite different regulatory influences, as strains that would be normal in the human skull would be likely to lead to profound bone loss by disuse in the long bones

    Evaluation of the influence of strain rate on Colles' fracture load

    No full text
    Colles’ fracture, a transverse fracture of the distal radius bone, is one of the most frequently observed osteoporotic fractures resulting from low energy or traumatic events, associated with low and high strain rates, respectively. Although experimental studies on Colles’ fracture were carried out at various loading rates ranging from static to impact loading, there is no systematic study in the literature that isolates the influence of strain rate on Colles’ fracture load. In order to provide a better understanding of fracture risk, the current study combines experimental material property measurements under varying strain rates with computational modeling and presents new information on the effect of strain rate on Colles’ fracture. The simulation results showed that the Colles’ fracture load decreased with increasing strain rate with a steeper change in lower strain rates. Specifically, strain rate values (0.29 s(−1)) associated with controlled falling without fracture corresponded to a 3.7% reduction in the fracture load. On the other hand, the reduction in the fracture load was 34% for strain rate of 3.7 s(−1) reported in fracture inducing impact cadaver experiments. Further increase in the strain rate up to 18 s(−1) lead to an additional 22% reduction. The most drastic reduction in fracture load occurs at strain rates corresponding to the transition from controlled to impact falling. These results are particularly important for the improvement of fracture risk assessment in the elderly because they identify a critical range of loading rates (10–50 mm/s) that can dramatically increase the risk of Colles’ fracture
    corecore