149 research outputs found

    A new clinically applicable immune-metabolic signature (IMMETCOLS) reveals metabolic singularities in consensus molecular subtypes (CMS) in colorectal cancer

    Full text link
    Background: In the last years, a great effort has been made to unify different independent colorectal cancer (CRC) molecular classification systems into four consensus molecular subtypes (CMS). The four subtypes are found to be associated with distinct microenvironmental features and clinical outcome, although metabolic singularities are not well established. Metabolic dysregulation has been reported as a hallmark of CMS3, but metabolic heterogeneity among other subtypes has not been investigated. Here, taking into account the increasing evidence on the importance, for determining response to therapies, of the metabolic crosstalk between cancer cells, tumor microenvironment and immune cells, we investigated the metabolic singularities in the four CMS using a genetic immune-metabolic signature (IMMETCOLS). Conclusions: IMMETCOLS signature refines CMS prognosis in CRC patients and potentially allows specific metabolic interventions in CMS subtypes

    Multimorbidity patterns with K-means nonhierarchical cluster analysis

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordAvailability of data and materials: The datasets are not available because researchers have signed an agreement with the Information System for the Development of Research in Primary Care (SIDIAP) concerning confidentiality and security of the dataset that forbids providing data to third parties. This organization is subject to periodic audits to ensure the validity and quality of the data.BACKGROUND: The purpose of this study was to ascertain multimorbidity patterns using a non-hierarchical cluster analysis in adult primary patients with multimorbidity attended in primary care centers in Catalonia. METHODS: Cross-sectional study using electronic health records from 523,656 patients, aged 45-64 years in 274 primary health care teams in 2010 in Catalonia, Spain. Data were provided by the Information System for the Development of Research in Primary Care (SIDIAP), a population database. Diagnoses were extracted using 241 blocks of diseases (International Classification of Diseases, version 10). Multimorbidity patterns were identified using two steps: 1) multiple correspondence analysis and 2) k-means clustering. Analysis was stratified by sex. RESULTS: The 408,994 patients who met multimorbidity criteria were included in the analysis (mean age, 54.2 years [Standard deviation, SD: 5.8], 53.3% women). Six multimorbidity patterns were obtained for each sex; the three most prevalent included 68% of the women and 66% of the men, respectively. The top cluster included coincident diseases in both men and women: Metabolic disorders, Hypertensive diseases, Mental and behavioural disorders due to psychoactive substance use, Other dorsopathies, and Other soft tissue disorders. CONCLUSION: Non-hierarchical cluster analysis identified multimorbidity patterns consistent with clinical practice, identifying phenotypic subgroups of patients.The project has been funded by the Instituto de Salud Carlos III of the Ministry of Economy and Competitiveness (Spain) through the Network for Prevention and Health Promotion in Primary Health Care (redIAPP, RD12/0005), by a grant for research projects on health from ISCiii (PI12/00427) and co-financed with European Union ERDF funds). Jose M. Valderas was supported by the National Institute for Health Research Clinician Scientist Award NIHR/CS/010/024

    Comparison of the information provided by electronic health records data and a population health survey to estimate prevalence of selected health conditions and multimorbidity

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Background Health surveys (HS) are a well-established methodology for measuring the health status of a population. The relative merit of using information based on HS versus electronic health records (EHR) to measure multimorbidity has not been established. Our study had two objectives: 1) to measure and compare the prevalence and distribution of multimorbidity in HS and EHR data, and 2) to test specific hypotheses about potential differences between HS and EHR reporting of diseases with a symptoms-based diagnosis and those requiring diagnostic testing. Methods Cross-sectional study using data from a periodic HS conducted by the Catalan government and from EHR covering 80% of the Catalan population aged 15 years and older. We determined the prevalence of 27 selected health conditions in both data sources, calculated the prevalence and distribution of multimorbidity (defined as the presence of ≥2 of the selected conditions), and determined multimorbidity patterns. We tested two hypotheses: a) health conditions requiring diagnostic tests for their diagnosis and management would be more prevalent in the EHR; and b) symptoms-based health problems would be more prevalent in the HS data. Results We analysed 15,926 HS interviews and 1,597,258 EHRs. The profile of the EHR sample was 52% women, average age 47 years (standard deviation: 18.8), and 68% having at least one of the selected health conditions, the 3 most prevalent being hypertension (20%), depression or anxiety (16%) and mental disorders (15%). Multimorbidity was higher in HS than in EHR data (60% vs. 43%, respectively, for ages 15-75+, P <0.001, and 91% vs. 83% in participants aged ≥65 years, P <0.001). The most prevalent multimorbidity cluster was cardiovascular. Circulation disorders (other than varicose veins), chronic allergies, neck pain, haemorrhoids, migraine or frequent headaches and chronic constipation were more prevalent in the HS. Most symptomatic conditions (71%) had a higher prevalence in the HS, while less than a third of conditions requiring diagnostic tests were more prevalent in EHR. Conclusions Prevalence of multimorbidity varies depending on age and the source of information. The prevalence of self-reported multimorbidity was significantly higher in HS data among younger patients; prevalence was similar in both data sources for elderly patients. Self-report appears to be more sensitive to identifying symptoms-based conditions. A comprehensive approach to the study of multimorbidity should take into account the patient perspective.Ministry of Science and Innovation through the Instituto Carlos IIIISCiii-RETICSInstitut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol

    Multimorbidity Patterns in Elderly Primary Health Care Patients in a South Mediterranean European Region: A Cluster Analysis.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tThis is the final version of the article. Available from Public Library of Science via the DOI in this record.OBJECTIVE: The purpose of this study was to identify clusters of diagnoses in elderly patients with multimorbidity, attended in primary care. DESIGN: Cross-sectional study. SETTING: 251 primary care centres in Catalonia, Spain. PARTICIPANTS: Individuals older than 64 years registered with participating practices. MAIN OUTCOME MEASURES: Multimorbidity, defined as the coexistence of 2 or more ICD-10 disease categories in the electronic health record. Using hierarchical cluster analysis, multimorbidity clusters were identified by sex and age group (65-79 and ≥80 years). RESULTS: 322,328 patients with multimorbidity were included in the analysis (mean age, 75.4 years [Standard deviation, SD: 7.4], 57.4% women; mean of 7.9 diagnoses [SD: 3.9]). For both men and women, the first cluster in both age groups included the same two diagnoses: Hypertensive diseases and Metabolic disorders. The second cluster contained three diagnoses of the musculoskeletal system in the 65- to 79-year-old group, and five diseases coincided in the ≥80 age group: varicose veins of the lower limbs, senile cataract, dorsalgia, functional intestinal disorders and shoulder lesions. The greatest overlap (54.5%) between the three most common diagnoses was observed in women aged 65-79 years. CONCLUSION: This cluster analysis of elderly primary care patients with multimorbidity, revealed a single cluster of circulatory-metabolic diseases that were the most prevalent in both age groups and sex, and a cluster of second-most prevalent diagnoses that included musculoskeletal diseases. Clusters unknown to date have been identified. The clusters identified should be considered when developing clinical guidance for this population.This study was supported by a grant from the Ministry of Science and Innovation through the Instituto Carlos III (ISCiii) in the 2012 call for Strategic Health Action proposals under the National Plan for Scientific Research, Development and Technological Innovation 2008–2011; by the European Union through the European Regional Development Fund (IP12/00427), as part of the Primary Care Prevention and Health Promotion Research Network (rediAPP), by ISCiii-RETICS (RD12/0005), by a 2011–2013 scholarship that aims to promote research in Primary Health Care by health professionals who have completed their specialty training, awarded by Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), by a National Institute for Health Research Clinician Scientist Award (Jose M Valderas, NIHR/CS/010/024) and by a grant from the XIX call for research projects in the elderly population by Agrupació Mútua Foundation (Premio ámbito para las personas mayores, 2012). The funders had no role in the study design, collection, analysis and interpretation of data, writing of the manuscript or decision to submit for publication

    Burden of multimorbidity, socioeconomic status and use of health services across stages of life in urban areas: a cross-sectional study

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Background The burden of chronic conditions and multimorbidity is a growing health problem in developed countries. The study aimed to determine the estimated prevalence and patterns of multimorbidity in urban areas of Catalonia, stratified by sex and adult age groups, and to assess whether socioeconomic status and use of primary health care services were associated with multimorbidity. Methods A cross-sectional study was conducted in Catalonia. Participants were adults (19+ years) living in urban areas, assigned to 251 primary care teams. Main outcome: multimorbidity (≥2 chronic conditions). Other variables: sex (male/female), age (19–24; 25–44; 45–64; 65–79; 80+ years), socioeconomic status (quintiles), number of health care visits during the study. Results We included 1,356,761 patients; mean age, 47.4 years (SD: 17.8), 51.0% women. Multimorbidity was present in 47.6% (95% CI 47.5-47.7) of the sample, increasing with age in both sexes but significantly higher in women (53.3%) than in men (41.7%). Prevalence of multimorbidity in each quintile of the deprivation index was higher in women than in men (except oldest group). In women, multimorbidity prevalence increased with quintile of the deprivation index. Overall, the median (interquartile range) number of primary care visits was 8 (4–14) in multimorbidity vs 1 (0–4) in non-multimorbidity patients. The most prevalent multimorbidity pattern beyond 45 years of age was uncomplicated hypertension and lipid disorder. Compared with the least deprived group, women in other quintiles of the deprivation index were more likely to have multimorbidity than men until 65 years of age. The odds of multimorbidity increased with number of visits in all strata. Conclusions When all chronic conditions were included in the analysis, almost 50% of the adult urban population had multimorbidity. The prevalence of multimorbidity differed by sex, age group and socioeconomic status. Multimorbidity patterns varied by life-stage and sex; however, circulatory-endocrine-metabolic patterns were the most prevalent multimorbidity pattern after 45 years of age. Women younger than 80 years had greater prevalence of multimorbidity than men, and women’s multimorbidity prevalence increased as socioeconomic status declined in all age groups. Identifying multimorbidity patterns associated with specific age-related life-stages allows health systems to prioritize and to adapt clinical management efforts by age group.Ministry of Science and Innovation through the Instituto Carlos III (ISCiii)ISCiii-RETICSISCiiiInstitut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol

    Five-year trajectories of multimorbidity patterns in an elderly Mediterranean population using Hidden Markov Models

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordThis study aimed to analyse the trajectories and mortality of multimorbidity patterns in patients aged 65 to 99 years in Catalonia (Spain). Five year (2012–2016) data of 916,619 participants from a primary care, population-based electronic health record database (Information System for Research in Primary Care, SIDIAP) were included in this retrospective cohort study. Individual longitudinal trajectories were modelled with a Hidden Markov Model across multimorbidity patterns. We computed the mortality hazard using Cox regression models to estimate survival in multimorbidity patterns. Ten multimorbidity patterns were originally identified and two more states (death and drop-outs) were subsequently added. At baseline, the most frequent cluster was the Non-Specific Pattern (42%), and the least frequent the Multisystem Pattern (1.6%). Most participants stayed in the same cluster over the 5 year follow-up period, from 92.1% in the Nervous, Musculoskeletal pattern to 59.2% in the Cardio-Circulatory and Renal pattern. The highest mortality rates were observed for patterns that included cardio-circulatory diseases: Cardio-Circulatory and Renal (37.1%); Nervous, Digestive and Circulatory (31.8%); and Cardio-Circulatory, Mental, Respiratory and Genitourinary (28.8%). This study demonstrates the feasibility of characterizing multimorbidity patterns along time. Multimorbidity trajectories were generally stable, although changes in specific multimorbidity patterns were observed. The Hidden Markov Model is useful for modelling transitions across multimorbidity patterns and mortality risk. Our findings suggest that health interventions targeting specific multimorbidity patterns may reduce mortality in patients with multimorbidity.Carlos III Institute of Health, Ministry of Economy and Competitiveness (Spain)European Regional Development FundDepartment of Health of the Catalan GovernmentCatalan Governmen

    Estrategia para el impulso de los trabajos final de grado y doctorado sobre Cooperación Internacional y Tecnología para el Desarrollo Humano

    Get PDF
    In the year 2000 a biannual contest was created in Spain to give an award to the best projects in the field of International Development Cooperation an d in the area of Technology for Human Development. This contest was promoted in the beginning by The General Council of Chambers of Industrial Engineers. Then, Engineering Without Borders - Spain (Ingeniería Sin Fronteras, ISF) took up the promotion and co - ordination of this contest. Due to this change it has been possible to extend the set of sponsor and collaborator entities, including Spanish Technical Universities. It has been created also the first contest of doctoral thesis, answering to the strategic aim of Engineering Without Borders - Spain: to promote the University research in the field of development cooperation. This paper presents an analysis of the projects presented to the contest during its three editions. The analysis includes the areas where the projects have been developed, the organizations that have participated and the schools or faculties were the projects have been developed. The increasing numbers show that the interest on developing projects in this field of International Cooperation in the University is growing. The analysis shows as well the participation, collaboration and contribution of the University to the International Development Cooperation through these projects that University students have to prepare and defendPeer ReviewedPostprint (published version

    An atlas of genetic scores to predict multi-omic traits

    Get PDF
    The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores

    Interoperable and scalable data analysis with microservices: applications in metabolomics.

    Get PDF
    Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator. We developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis. The environment can be launched on-demand on cloud resources and desktop computers. IT-expertise requirements on the user side are kept to a minimum, and workflows can be re-used effortlessly by any novice user. We validate our method in the field of metabolomics on two mass spectrometry, one nuclear magnetic resonance spectroscopy and one fluxomics study. We showed that the method scales dynamically with increasing availability of computational resources. We demonstrated that the method facilitates interoperability using integration of the major software suites resulting in a turn-key workflow encompassing all steps for mass-spectrometry-based metabolomics including preprocessing, statistics and identification. Microservices is a generic methodology that can serve any scientific discipline and opens up for new types of large-scale integrative science. The PhenoMeNal consortium maintains a web portal (https://portal.phenomenal-h2020.eu) providing a GUI for launching the Virtual Research Environment. The GitHub repository https://github.com/phnmnl/ hosts the source code of all projects. Supplementary data are available at Bioinformatics online
    corecore