138 research outputs found

    A Taylor Model Based Description of the proof stress of magnesium AZ31 during hot working

    Full text link
    A series of hot-compression tests and Taylor-model simulations were carried out with the intention of developing a simple expression for the proof stress of magnesium alloy AZ31 during hot working. A crude approximation of wrought textures as a mixture of a single ideal texture component and a random background was employed. The shears carried by each deformation system were calculated using a full-constraint Taylor model for a selection of ideal orientations as well as for random textures. These shears, in combination with the measured proof stresses, were employed to estimate the critical resolved shear stresses for basal slip, prismatic slip, ⟹c+a⟩ second-order pyramidal slip, and { } twinning. The model thus established provides a semianalytical estimation of the proof stress (a one-off Taylor simulation is required) and also indicates whether or not twinning is expected. The approach is valid for temperatures between ∼150 °C and ∼450 °C, depending on the texture, strain rate, and strain path

    Constraint methods for determining pathways and free energy of activated processes

    Full text link
    Activated processes from chemical reactions up to conformational transitions of large biomolecules are hampered by barriers which are overcome only by the input of some free energy of activation. Hence, the characteristic and rate-determining barrier regions are not sufficiently sampled by usual simulation techniques. Constraints on a reaction coordinate r have turned out to be a suitable means to explore difficult pathways without changing potential function, energy or temperature. For a dense sequence of values of r, the corresponding sequence of simulations provides a pathway for the process. As only one coordinate among thousands is fixed during each simulation, the pathway essentially reflects the system's internal dynamics. From mean forces the free energy profile can be calculated to obtain reaction rates and insight in the reaction mechanism. In the last decade, theoretical tools and computing capacity have been developed to a degree where simulations give impressive qualitative insight in the processes at quantitative agreement with experiments. Here, we give an introduction to reaction pathways and coordinates, and develop the theory of free energy as the potential of mean force. We clarify the connection between mean force and constraint force which is the central quantity evaluated, and discuss the mass metric tensor correction. Well-behaved coordinates without tensor correction are considered. We discuss the theoretical background and practical implementation on the example of the reaction coordinate of targeted molecular dynamics simulation. Finally, we compare applications of constraint methods and other techniques developed for the same purpose, and discuss the limits of the approach

    Second generation anticoagulant rodenticide residues in red kites 2021

    Get PDF
    Second-generation anticoagulant rodenticides (SGARs) can be toxic to all mammals and birds if consumed. Various studies have shown that, in Britain, there is widespread exposure to SGARs in a diverse range of predatory mammals and birds, including red kites (Milvus milvus) which scavenge dead rats, a target species for rodent control. The Wildlife Incident Investigation Scheme (WIIS) and the Predatory Bird Monitoring Scheme (PBMS) have shown that some mortalities result from this secondary exposure. In the present study, we analysed liver SGAR residues in 42 red kites that had been found dead in Britain in 2021. The carcasses were submitted to and necropsied by the Disease Risk Analysis and Health Surveillance (DRAHS) programme, the PBMS, the WIIS for England & Wales, the WIIS for Scotland and the Raptor Health Scotland study. All the organisations are partners in the WILDCOMS (Wildlife Disease & Contaminant Monitoring & Surveillance Network) network that promotes collaboration among surveillance schemes that monitor disease and contaminants in vertebrate wildlife in the UK. The UK Rodenticide Stewardship Regime (hereafter referred to as the stewardship scheme) began to come into force in mid-2016 as re-registration of products for use in the UK was approved by the HSE; full implementation of the scheme was in early 2018. The key aim of this stewardship initiative is to support competence among all users of professional SGAR products. A potential benefit of this may be the reduced exposure of non-target wildlife to anticoagulant rodenticides. However, the number and density of SGAR-contaminated rats may remain unchanged although diligent searching, removal, and safe disposal of poisoned rats, as promoted by the stewardship regime, might be expected to reduce the availability of poisoned dead rats to red kites (and other scavengers) and thereby reduce the proportion of birds that are exposed and/or the magnitude of exposure. Concomitant with the stewardship scheme was a relaxation of the indoor-use-only-restriction applied to brodifacoum, flocoumafen, and difethialone, the three most acutely toxic SGARs to use indoor and outdoor around buildings. Any consequent increase in outdoor use of these three SGARs could increase the risk of secondary exposure in red kites. We therefore compared the data in the current report with that collected in 2015 and 2016 to determine if there was any evidence of a change in pattern or magnitude of exposure in red kites that might be connected to stewardship and/or change in usage restriction. All of the 39 red kites from England & Wales and two of the three red kites from Scotland had detectable liver residues of at least one type of SGAR. When considering the sample of red kites as a whole, brodifacoum, difenacoum, and bromadiolone were each detected in 41, 39, and 32 red kites, respectively. Difethialone was found in four individuals, while flocoumafen was detected in no bird. The proportion of analysed red kites exposed to SGARs in 2015 (91%), 2016 (90%), 2017 (96%), 2018 (100%), 2019 (91%), 2020 (88%), and 2021 (98%) was similar at circa 88% or more. Difenacoum, brodifacoum, and bromadiolone were the most prevalent compounds (detected in 87%, 87%, and 76% of red kites across the seven years for each compound, respectively). On average, there were detectable residues of three different SGARs in each red kite liver likely demonstrating multiple exposures. Sum liver SGAR concentrations in birds from 2021 ranged between non-detectable and 3223.7 ng/g wet weight (arithmetic mean: 482 ng/g wet weight, median 334.4 ng/g wet weight). Necropsy examinations indicated that five red kites showed signs of being poisoned by SGARs (i.e., showing internal haemorrhaging that is not associated with detectable trauma and also having detectable liver SGAR concentrations). These samples accounted for 14% of the red kites of this year excluding uncertain poisoning cases. These five birds had sum SGAR liver concentrations of 463.5, 684, 990, 1405.9, and 3223.7 ng/g wet weight. SGARs were considered a contributory cause of death resulting from unspecified use in these cases. SGARs were a contributory cause of death in 16% of the red kite cases examined across all seven years. Over the period 2015 to 2021, a reduction has been observed in the percentage of red kites examined that were diagnosed as birds in which SGARs were implicated as a contributory cause of death. However, given that the WIIS scheme specifically examines suspected poisoning incidents, it is likely that poisoned birds are over represented in this sample compared to the population as a whole in all seven years. Due to these reasons, caution should be used when interpreting evident changes in mortality rates due to the sampling protocols used in this study that may lead to over reporting of mortality rates, and those rates being subject to variations in relative contribution of the WIIS and PBMS to each year’s sample. There were statistically significant differences between years in median summed SGAR residues, irrespective of cause of death. The magnitude of accumulated summed SGAR residues, particularly sum of brodifacoum, flocoumafen, and difethialone concentrations, was significantly higher in 2021 than in many of the previous years. Given low occurrence and low concentrations of flocoumafen and difethialone residues, it is likely that the magnitude of brodifacoum residues has increased over recent years. Data on presence/absence of detectable brodifacoum, flocoumafen or difethialone residues were compared for 2015/2016 and 2017/18/19/20/21. The proportion of red kites with detectable residues of these three SGARs was not significantly different between in 2015/2016 (82%) and in 2017/18/19/20/21 (88%). Similarly, there was no significant difference in the proportion of red kites with detectable liver difenacoum or bromadiolone residues (90% in 2015/2016 vs. 94% in 2017/18/19/20/21). Since the implementation of the stewardship regime, no difference in exposure pattern relating to active ingredient has been detected with the exception of an increase in the concentrations of brodifacoum. Spatial analysis, by county/region indicated that across the monitoring period highest exposure to SGARs in red kites appeared to be around the Berkshire/Hampshire and, to a lesser extent, North Yorkshire. Our findings do not indicate that there has been a broad scale change in exposure in red kites to SGARs following implementation of stewardship in terms of either the proportion of the sample exposed or the magnitude of sum SGARs residues detected. However, there is evidence that the proportion of red kites in which SGARs were implicated as a contributory mortality factor has decreased in more recent years. Alternative approaches to monitoring SGARs in red kites could be considered that analyses a random but representative sample, and as part of such a programme there may also be value in monitoring SGARs in the blood of tracked individuals. There was no clear evidence that relaxation of usage restrictions on brodifacoum, difethialone and flocoumafen has altered the pattern of residues for these compounds in red kites to date, when considered collectively but brodifacoum exposure has increased in recent year

    Ï”â€Č/Ï”\epsilon'/\epsilon And Anomalous Gauge Boson Couplings

    Full text link
    We study Ï”â€Č/Ï”\epsilon'/\epsilon in the Standard Model and Ï”â€Č/Ï”\epsilon'/\epsilon due to anomalous WWÎłWW\gamma and WWZWWZ interactions %using recent result on the top quark mass from CDF. as a function of the top quark mass. In the Standard Model, Ï”â€Č/Ï”\epsilon'/\epsilon is in the range 10−3∌10−410^{-3} \sim 10^{-4} for the central value of top quark mass reported by CDF. The anomalous gauge couplings can have large contributions to the CPCP violating I=2I=2 amplitude in K→ππK \rightarrow \pi\pi. Within the allowed regions for the anomalous gauge couplings, Ï”â€Č/Ï”\epsilon'/\epsilon can be dramatically different from the standard model prediction.Comment: 17 pages plus one figure (available from the author upon request), Revtex, OITS-541, UM-P-94/4

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Get PDF

    GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object

    Get PDF
    We report the observation of a compact binary coalescence involving a 22.2–24.3 Me black hole and a compact object with a mass of 2.50–2.67 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of - + 241 45 41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, - + 0.112 0.009 0.008, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to ïżœ0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries
    • 

    corecore