29 research outputs found

    Critical Casimir forces in colloidal suspensions on chemically patterned surfaces

    Full text link
    We investigate the behavior of colloidal particles immersed in a binary liquid mixture of water and 2,6-lutidine in the presence of a chemically patterned substrate. Close to the critical point of the mixture, the particles are subjected to critical Casimir interactions with force components normal and parallel to the surface. Because the strength and sign of these interactions can be tuned by variations in the surface properties and the mixtures temperature, critical Casimir forces allow the formation of highly ordered monolayers but also extend the use of colloids as model systems.Comment: 4 papges, 4 figures, accepted at Phys. Rev. Let

    Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane

    Get PDF
    In previous research, direction detection thresholds have been measured and successfully modeled by exposing participants to sinusoidal acceleration profiles of different durations. In this paper, we present measurements that reveal differences in thresholds depending not only on the duration of the profile, but also on the actual time course of the acceleration. The measurements are further explained by a model based on a transfer function, which is able to predict direction detection thresholds for all types of acceleration profiles. In order to quantify a participant’s ability to detect the direction of motion in the horizontal plane, a four-alternative forced-choice task was implemented. Three types of acceleration profiles (sinusoidal, trapezoidal and triangular) were tested for three different durations (1.5, 2.36 and 5.86 s). To the best of our knowledge, this is the first study which varies both quantities (profile and duration) in a systematic way within a single experiment. The lowest thresholds were found for trapezoidal profiles and the highest for triangular profiles. Simulations for frequencies lower than the ones actually measured predict a change from this behavior: Sinusoidal profiles are predicted to yield the highest thresholds at low frequencies. This qualitative prediction is only possible with a model that is able to predict thresholds for different types of acceleration profiles. Our modeling approach represents an important advancement, because it allows for a more general and accurate description of perceptual thresholds for simple and complex translational motions

    Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles

    Get PDF
    Understanding the dynamics of vestibular perception is important, for example, for improving the realism of motion simulation and virtual reality environments or for diagnosing patients suffering from vestibular problems. Previous research has found a dependence of direction discrimination thresholds for rotational motions on the period length (inverse frequency) of a transient (single cycle) sinusoidal acceleration stimulus. However, self-motion is seldom purely sinusoidal, and up to now, no models have been proposed that take into account non-sinusoidal stimuli for rotational motions. In this work, the influence of both the period length and the specific time course of an inertial stimulus is investigated. Thresholds for three acceleration profile shapes (triangular, sinusoidal, and trapezoidal) were measured for three period lengths (0.3, 1.4, and 6.7 s) in ten participants. A two-alternative forced-choice discrimination task was used where participants had to judge if a yaw rotation around an earth-vertical axis was leftward or rightward. The peak velocity of the stimulus was varied, and the threshold was defined as the stimulus yielding 75 % correct answers. In accordance with previous research, thresholds decreased with shortening period length (from ~2 deg/s for 6.7 s to ~0.8 deg/s for 0.3 s). The peak velocity was the determining factor for discrimination: Different profiles with the same period length have similar velocity thresholds. These measurements were used to fit a novel model based on a description of the firing rate of semi-circular canal neurons. In accordance with previous research, the estimates of the model parameters suggest that velocity storage does not influence perceptual thresholds

    Evaluation of laboratory tests for cirrhosis and for alcohol use, in the context of alcoholic cirrhosis

    Get PDF
    International audienceLaboratory tests can play an important role in assessment of alcoholic patients, including for evaluation of liver damage and as markers of alcohol intake. Evidence on test performance should lead to better selection of appropriate tests and improved interpretation of results. We compared laboratory test results from 1578 patients between cases (with alcoholic cirrhosis; 753 men, 243 women) and controls (with equivalent lifetime alcohol intake but no liver disease; 439 men, 143 women). Comparisons were also made between 631 cases who had reportedly been abstinent from alcohol for over 60 days and 364 who had not. ROC curve analysis was used to estimate and compare tests' ability to distinguish patients with and without cirrhosis, and abstinent and drinking cases. The best tests for presence of cirrhosis were INR and bilirubin, with areas under the ROC curve (AUCs) of 0.91~\textpm~0.01 and 0.88~\textpm~0.01, respectively. Confining analysis to patients with no current or previous ascites gave AUCs of 0.88~\textpm~0.01 for INR and 0.85~\textpm~0.01 for bilirubin. GGT and AST showed discrimination between abstinence and recent drinking in patients with cirrhosis, including those without ascites, when appropriate (and for GGT, sex-specific) limits were used. For AST, a cut-off limit of 85~units/L gave 90% specificity and 37% sensitivity. For GGT, cut-off limits of 288~units/L in men and 138~units/L in women gave 90% specificity for both and 40% sensitivity in men, 63% sensitivity in women. INR and bilirubin show the best separation between patients with alcoholic cirrhosis (with or without ascites) and control patients with similar lifetime alcohol exposure. Although AST and GGT are substantially increased by liver disease, they can give useful information on recent alcohol intake in patients with alcoholic cirrhosis when appropriate cut-off limits are used

    Genome-wide Association Study and Meta-analysis on Alcohol-Associated Liver Cirrhosis Identifies Genetic Risk Factors

    Get PDF
    International audienceBackground and aims - Only a minority of heavy drinkers progress to alcohol-associated cirrhosis (ALC). The aim of this study was to identify common genetic variants that underlie risk for ALC. Approach and results - We analyzed data from 1,128 subjects of European ancestry with ALC and 614 heavy-drinking subjects without known liver disease from Australia, the United States, the United Kingdom, and three countries in Europe. A genome-wide association study (GWAS) was performed, adjusting for principal components and clinical covariates (alcohol use, age, sex, body mass index, and diabetes). We validated our GWAS findings using UK Biobank. We then performed a meta-analysis combining data from our study, the UK Biobank, and a previously published GWAS. Our GWAS found genome-wide significant risk association of rs738409 in patatin-like phospholipase domain containing 3 (PNPLA3) (odds ratio [OR] = 2.19 [G allele], P = 4.93 × 10 ) and rs4607179 near HSD17B13 (OR = 0.57 [C allele], P = 1.09 × 10 ) with ALC. Conditional analysis accounting for the PNPLA3 and HSD17B13 loci identified a protective association at rs374702773 in Fas-associated factor family member 2 (FAF2) (OR = 0.61 [del(T) allele], P = 2.56 × 10 ) for ALC. This association was replicated in the UK Biobank using conditional analysis (OR = 0.79, P = 0.001). Meta-analysis (without conditioning) confirmed genome-wide significance for the identified FAF2 locus as well as PNPLA3 and HSD17B13. Two other previously known loci (SERPINA1 and SUGP1/TM6SF2) were also genome-wide significant in the meta-analysis. GeneOntology pathway analysis identified lipid droplets as the target for several identified genes. In conclusion, our GWAS identified a locus at FAF2 associated with reduced risk of ALC among heavy drinkers. Like the PNPLA3 and HSD17B13 gene products, the FAF2 product has been localized to fat droplets in hepatocytes. Conclusions - Our genetic findings implicate lipid droplets in the biological pathway(s) underlying ALC

    Improving the Understanding of Low Frequency Magnetic Field Exposure with Augmented Reality

    No full text
    Low frequency magnetic fields are often present in our everyday life due to the multitude of electronic devices. High magnetic fields can occur in the workplace from a wide variety of machines and systems, which must be measured and evaluated from the point of view of occupational safety. To facilitate the understanding of magnetic fields by supervisors and employees in the workplace, an augmented reality (AR) application was developed to visualize the measured flux densities and the resulting safety distances. The application was deployed on two smartphones, allowing for the simultaneous viewing of the same scene without the use of additional markers. Whether the application creates a better understanding of the exposure situation was evaluated with the help of an online survey. In this survey, participants received either a classic measurement report or a report enhanced by augmented images. The evaluation shows that it subjectively felt less difficult for participants with the augmented report to answer questions about the exposure situation. Furthermore, they also objectively performed better in answering the questions than did the group with the classic report. Therefore, this work shows that AR enhanced images can improve the understanding of an exposure situation, and it describes how such images and videos can be created

    The role of acceleration and jerk in perception of above-threshold surge motion

    No full text
    Inertial motions may be defined in terms of acceleration and jerk, the time-derivative of acceleration. We investigated the relative contributions of these characteristics to the perceived intensity of motions. Participants were seated on a high-fidelity motion platform, and presented with 25 above-threshold 1 s forward (surge) motions that had acceleration values ranging between 0.5 and 2.5 [Formula: see text] and jerks between 20 and 60 [Formula: see text], in five steps each. Participants performed two tasks: a magnitude estimation task, where they provided subjective ratings of motion intensity for each motion, and a two-interval forced choice task, where they provided judgments on which motion of a pair was more intense, for all possible combinations of the above motion profiles. Analysis of the data shows that responses on both tasks may be explained by a single model, and that this model should include acceleration only. The finding that perceived motion intensity depends on acceleration only appears inconsistent with previous findings. We show that this discrepancy can be explained by considering the frequency content of the motions, and demonstrate that a linear time-invariant systems model of the otoliths and subsequent processing can account for the present data as well as for previous findings

    Model Results.

    No full text
    <p>Mean results for the eccentric discrimination thresholds together with standard errors are shown (blue). Model fits are shown in black for the switching model and in red for the integration model. It can be clearly seen that the integration model predicts the eccentric thresholds better, but 3 out of 5 thresholds are even significantly lower than what the optimal integration model predicts.</p

    Models.

    No full text
    <p>Description of the two alternative models which we refer to as the switching model and the integration model. For both models less rotational velocity is needed with increasing radius for discriminating the motion direction. However for intermediate radii there are clear differences in threshold behavior between the models, where an integration model is more sensitive.</p
    corecore