124 research outputs found

    ESAT-6 targeting to DEC205+ antigen presenting cells induces specific-T cell responses against ESAT-6 and reduces pulmonary infection with virulent Mycobacterium tuberculosis

    Get PDF
    Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen\u27s naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions

    Network of dendritic cells within the muscular layer of the mouse intestine

    Get PDF
    Dendritic cells (DCs) are located at body surfaces such as the skin, respiratory and genital tracts, and intestine. To further analyze intestinal DCs, we adapted an epidermal sheet separation technique and obtained two intestinal layers, facing the lumen and serosa. Unexpectedly, immunolabeling of the layer toward the serosa revealed a regular, dense, planar network of cells with prominent dendritic morphology within the external muscular layer and with increasing frequency along the length of the intestine. Direct examination of the serosal-disposed layers showed a significant fraction of the DCs to express DEC-205/CD205, CD11c, Langerin/CD207, Fcγ receptor/CD16/32, CD14, and low levels of activation markers, CD25, CD80, CD86, and CD95. By more sensitive FACS analyses, cells from this layer contained two CD11c+ populations of CD45+ CD205+, CD19- leukocytes, MHC II + and MHC II-. When ovalbumin conjugated to an anti-DEC-205 antibody was injected into mice, the conjugate targeted to these DCs, which upon isolation were able to stimulate ovalbumin-specific, CD4 + and CD8+ T cell antigen receptor-transgenic T cells. In vivo, these DCs responded to two microbial stimuli, systemic LPS and oral live bacteria, by up-regulating CD80, CD86, DEC-205, and Langerin within 12 h. This network of DCs thus represents a previously unrecognized antigen-presenting cell system in the intestine

    Homeostatic NF-κB Signaling in Steady-State Migratory Dendritic Cells Regulates Immune Homeostasis and Tolerance

    Get PDF
    SummaryMigratory non-lymphoid tissue dendritic cells (NLT-DCs) transport antigens to lymph nodes (LNs) and are required for protective immune responses in the context of inflammation and to promote tolerance to self-antigens in steady-state. However, the molecular mechanisms that elicit steady-state NLT-DC maturation and migration are unknown. By comparing the transcriptome of NLT-DCs in the skin with their migratory counterparts in draining LNs, we have identified a novel NF-κB-regulated gene network specific to migratory DCs. We show that targeted deletion of IKKβ in DCs, a major activator of NF-κB, prevents NLT-DC accumulation in LNs and compromises regulatory T cell conversion in vivo. This was associated with impaired tolerance and autoimmunity. NF-κB is generally considered the prototypical pro-inflammatory transcription factor, but this study describes a role for NF-κB signaling in DCs for immune homeostasis and tolerance that could have implications in autoimmune diseases and immunity

    Salmonella-induced thrombi in mice develop asynchronously in the spleen and liver and are not effective bacterial traps

    Get PDF
    Thrombosis is a frequent, life-threatening complication of systemic infection, associated with multiple organ damage. We have previously described a novel mechanism of inflammation-driven thrombosis induced by Salmonella Typhimurium infection of mice. Thrombosis in the liver develops 7 days post-infection persisting after the infection resolves, and is monocytic cell-dependent. Unexpectedly, thrombosis was not prominent in the spleen at this time, despite carrying a similar bacterial burden as the liver. In this study, we show that thrombosis does occur in the spleen but with strikingly accelerated kinetics compared to the liver, being evident by 24 h and resolving rapidly thereafter. The distinct kinetics of thrombosis and bacterial burden provide a test of the hypothesis that thrombi form in healthy vessels to trap or remove bacteria from the circulation, often termed immunothrombosis. Remarkably, despite bacteria being detected throughout infected spleens and livers in the early days of infection, immunohistological analysis of tissue sections show that thrombi contain very low numbers of bacteria. In contrast, bacteria are present throughout platelet aggregates induced by Salmonella in vitro. Therefore, we show that thrombosis develops with organ-specific kinetics and challenge the universality of immunothrombosis as a mechanism to capture bacteria in vivo

    Human Gut Symbiont Roseburia hominis Promotes and Regulates Innate Immunity

    Get PDF
    Objective: Roseburia hominis is a flagellated gut anaerobic bacterium belonging to the Lachnospiraceae family within the Firmicutes phylum. A significant decrease of R. hominis colonization in the gut of ulcerative colitis patients has recently been demonstrated. In this work, we have investigated the mechanisms of R. hominis-host cross-talk using both murine and in vitro models. Design: The complete genome sequence of R. hominis A2-183 was determined. C3H/HeN germ-free mice were mono-colonized with R. hominis, and the host-microbe interaction was studied using histology, transcriptome analyses and FACS. Further investigations were performed in vitro and using the TLR5KO and DSS-colitis murine models. Results: In the bacterium, R. hominis, host gut colonization up-regulated genes involved in conjugation/mobilization, metabolism, motility and chemotaxis. In the host cells, bacterial colonization up-regulated genes related to antimicrobial peptides, gut barrier function, TLR signaling, and T cell biology. CD4+CD25+FoxP3+ T cell numbers increased in the lamina propria of both mono-associated and conventional mice treated with R. hominis. Treatment with the R. hominis bacterium provided protection against DSS-induced colitis. The role of flagellin in host-bacterium interaction was also investigated. Conclusions: Mono-association of mice with R. hominis bacteria results in specific bi-directional gene expression patterns. A set of genes thought to be important for host colonization are induced in R. hominis, whilst the host cells respond by strengthening gut barrier function and enhancing Treg population expansion, possibly via TLR5-flagellin signaling. Our data reveal the immuno-modulatory properties of R. hominis that could be useful for the control and treatment of gut inflammation

    Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production

    Get PDF
    Soluble flagellin (sFliC) from Salmonella Typhimurium (STm) can induce a Th2 response to itself and coadministered antigens through ligation of TLR5. These properties suggest that sFliC could potentially modulate responses to Th1 antigens like live STm if both antigens are given concurrently. After coimmunization of mice with sFliC and STm there was a reduction in Th1 T\ua0cells (T-bet+IFN-γ+ CD4 T\ua0cells) compared to STm alone and there was impaired clearance of STm. In contrast, there was no significant defect in the early extrafollicular B-cell response to STm. These effects are dependent upon TLR5 and flagellin expression by STm. The mechanism for these effects is not related to IL-4 induced to sFliC but rather to the effects of sFliC coimmunization on DCs. After coimmunization with STm and sFliC, splenic DCs had a lower expression of costimulatory molecules and profoundly altered kinetics of IL-12 and TNFα expression. Ex vivo experiments using in vivo conditioned DCs confirmed the effects of sFliC were due to altered DC function during a critical window in the coordinated interplay between DCs and naïve T\ua0cells. This has marked implications for understanding how limits in Th1 priming can be achieved during infection-induced, Th1-mediated inflammation

    Resolving Salmonella infection reveals dynamic and persisting changes in murine bone marrow progenitor cell phenotype and function

    Get PDF
    The generation of immune cells from BM precursors is a carefully regulated process. This is essential to limit the potential for oncogenesis and autoimmunity yet protect against infection. How infection modulates this is unclear. Salmonella can colonize systemic sites including the BM and spleen. This resolving infection has multiple IFN-γ-mediated acute and chronic effects on BM progenitors, and during the first week of infection IFN-γ is produced by myeloid, NK, NKT, CD4+ T cells, and some lineage-negative cells. After infection, the phenotype of BM progenitors rapidly but reversibly alters, with a peak ∼30-fold increase in Sca-1hi progenitors and a corresponding loss of Sca-1lo/int subsets. Most strikingly, the capacity of donor Sca-1hi cells to reconstitute an irradiated host is reduced; the longer donor mice are exposed to infection, and Sca-1hic-kitint cells have an increased potential to generate B1a-like cells. Thus, Salmonella can have a prolonged influence on BM progenitor functionality not directly related to bacterial persistence. These results reflect changes observed in leucopoiesis during aging and suggest that BM functionality can be modulated by life-long, periodic exposure to infection. Better understanding of this process could offer novel therapeutic opportunities to modulate BM functionality and promote healthy aging

    Mice Deficient in T-bet Form Inducible NO Synthase-Positive Granulomas That Fail to Constrain Salmonella.

    Get PDF
    Clearance of intracellular infections caused by Salmonella Typhimurium (STm) requires IFN-γ and the Th1-associated transcription factor T-bet. Nevertheless, whereas IFN-γ-/- mice succumb rapidly to STm infections, T-bet-/- mice do not. In this study, we assess the anatomy of immune responses and the relationship with bacterial localization in the spleens and livers of STm-infected IFN-γ-/- and T-bet-/- mice. In IFN-γ-/- mice, there is deficient granuloma formation and inducible NO synthase (iNOS) induction, increased dissemination of bacteria throughout the organs, and rapid death. The provision of a source of IFN-γ reverses this, coincident with subsequent granuloma formation and substantially extends survival when compared with mice deficient in all sources of IFN-γ. T-bet-/- mice induce significant levels of IFN-γ- after challenge. Moreover, T-bet-/- mice have augmented IL-17 and neutrophil numbers, and neutralizing IL-17 reduces the neutrophilia but does not affect numbers of bacteria detected. Surprisingly, T-bet-/- mice exhibit surprisingly wild-type-like immune cell organization postinfection, including extensive iNOS+ granuloma formation. In wild-type mice, most bacteria are within iNOS+ granulomas, but in T-bet-/- mice, most bacteria are outside these sites. Therefore, Th1 cells act to restrict bacteria within IFN-γ-dependent iNOS+ granulomas and prevent dissemination
    corecore