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RESEARCH ARTICLE
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1 Department of Cell Biology, Cinvestav-IPN, Ciudad de México, Mexico, 2 Department of Immunology,
ENCB-IPN, Ciudad de México, Mexico, 3 Physiology and Cell Biology, Rockefeller University, New York,
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Abstract
Airways infection withMycobacterium tuberculosis (Mtb) is contained mostly by T cell re-

sponses, however, Mtb has developed evasion mechanisms which affect antigen present-

ing cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses.

Hypothetically, bypassing the natural infection routes by delivering antigens directly to

APCs may overcome the pathogen’s naturally evolved evasion mechanisms, thus facilitat-

ing the induction of protective immune responses. We generated a murine monoclonal fu-

sion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to

DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ

production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-

ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immu-

nization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-

γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control

mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells

loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed

increased target cell killing in the lungs, where histology revealed cellular infiltrate and

considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to

DEC205+ APCs before infection expands specific T cell clones responsible for early T cell

responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial bur-

den. Delivering mycobacterial antigens directly to APCs provides a unique approach to

study in vivo the role of APCs and specific T cell responses to assess their potential anti-

mycobacterial functions.
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Introduction
Mycobacterium tuberculosis (Mtb), the causative agent of Pulmonary Tuberculosis (TB), is one
of the oldest human pathogens known [1,2]. Among the glut of immune evasion mechanisms
evolved in Mtb, the ability to subvert antigen presentation to CD4+ and CD8+ T cells, key me-
diators of Mtb immunity, is thought to be a critical barrier to developing a successful immuni-
zation strategy. Cytokine production by Mtb-specific CD4+ T cells helps control Mtb infection
by activating and inducing NO production by macrophages [3–5] and by inducing Mtb-
specific cytotoxic CD8 T cells [6,7]. In fact, IFN-γ production by T cells is necessary for con-
taining pulmonary Mtb infection [8–11].

Mtb uniquely targets alveolar macrophages (AM) and lung dendritic cells (DC) to disrupt
and delay antigen presentation to T cells in the draining lymph node (Mediastinal LN). DCs
and AMs, both constituting the majority of lung antigen presenting cells (APC), defend against
pulmonary infection by phagocytosing foreign particles and presenting these antigens to im-
mune cells. Mtb specifically disrupts the function of lung APCs by causing the arrest of phago-
some maturation [12,13], inhibition of phagosome-lysosome fusion [14,15], inhibition of
cytotoxicity [16,17], and subversion of MHC-II intracellular trafficking[18]. Furthermore, Mtb
delays the maturation and migration of lung dendritic cells [19–22]. Ultimately this results in
delayed Mtb-specific T cell responses (17–20). In the experimental murine tuberculosis model,
strong T cells responses are generated after 21 days of infection, the bacilli are not completely
eliminated from the host and sterilizing immunity is not achieved.

However, evidence from murine tuberculosis models, suggest that accelerating the onset of
IFN-γ producing-T cell responses can aid in control of Mtb[23]. For instance, increased T cell
responses and reduced lung bacterial burden are achieved in mice immunized with recombi-
nant mycobacterial proteins[24], infected with reconstituted attenuated bacteria[25], or after
passive transfer of Mtb-specific T cells[5]. Given the disruption in antigen processing and pre-
sentation caused by Mtb, we have the hypothesis that targeting Mtb antigens to lung APCs
would accelerate Mtb-specific T cell responses and hamper Mtb growth. Antigen targeting
using monoclonal antibodies directed to DCs and coupled with a selected antigen is an effective
way to induce strong, specific T cell responses [26,27]. In the case of pulmonary tuberculosis,
lung DCs expressing DEC205+ are a potential candidate to deliver mycobacterial antigens
since it has been shown in situ that DEC205+ DCs interact with virulent Mtb H37Rv bacilli,
both in the lungs and in the mediastinal lymph nodes during airways infection [28]. Addition-
ally, DEC205 is an endocytic receptor[29–31] associated with Ag processing and presentation
[32,33], Mtb recognition[34], and, quite pertinent for this intracellular infection, with the in-
duction of Th1-type CD8+ responses too [35].

In the present work we generated a murine monoclonal fusion antibody containing the my-
cobacterial antigen ESAT-6 and the APC targeting antibody, anti-DEC205, and evaluated its
ability to speed Mtb-specific T cell responses and protection. Ligation of DEC205 by anti-
DEC205-containing fusion mAbs induces endocytosis of the fusion mAb and subsequent
TAP-dependent presentation of the Ag contained on the fusion mAb (31–33, 29). We chose to
include the Mtb protein ESAT-6 as the antigen in our fusion mAb because it is a highly immu-
nogenic mycobacterial antigen[36,37], that has been associated with strain virulence [38], in-
duction of Th1 T cell responses, and contains a conserved, well-defined T cell epitope[39–41].
For instance, immunization with ESAT-6 alone or with ESAT-6-reconstituted BCG has shown
in vivo protection to subsequent mycobacterial infection[42,43].

In our work, we targeted ESAT-6 to DEC205+ APCs (α-DEC-ESAT) and tested the in vivo
effects upon cellular immune responses (IFN-γ production, in vivo CTL killing rate and lung
Mtb clearance) during experimental pulmonary tuberculosis. To evaluate the ability of our
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fusion mAb, α-DEC-ESAT, to accelerate Mtb-specific T cell responses and contain Mtb, we
prime-boosted with α-DEC-ESAT and poly-IC before airways infection, and evaluated Mtb-
specific IFN-γ T cell responses, in vivo CTL killing, cellular infiltrate by lung histology, and
bacterial burden in α-DEC-ESAT-treated mice and controls. We found that ESAT-6 targeting
to DEC205+ APCs sped the onset and increased the magnitude of specific Th1-type T cell re-
sponses (IFN-γ production and in vivo CTL killing), and improved lymphocyte recruitment to
the lungs of Mtb-infected mice. Furthermore α-DEC-ESAT treatment reduced pulmonary Mtb
burden. These results indicate that direct antigen targeting to APCs can be an efficient strategy
to increase and improve T cell responses during Mtb infection, and perhaps, to counteract Mtb
naturally evolved evasion mechanisms.

Materials and Methods

Cloning and production of fusion α-DEC-ESAT mAb
Whole ESAT-6 sequence (obtained fromMycobacterium bovis) was cloned in frame into the
COOH terminus of the monoclonal mouse anti—DEC205 and the isotype control mAb heavy
chains. Fusion mAbs were produced by transient transfection (calcium phosphate) in 293T
cells, purified on high-performance nickel sepharose columns (GE Healthcare), and fusion was
confirmed by SDS—polyacrylamide gel electrophoresis (PAGE) (Fig 1A). The fusion antibod-
ies were tested by flow cytometry for binding to CHO cells transfected to express the mouse
DEC205 receptor (Fig 1A). Binding was revealed using a phycoerythrin conjugated goat
α-mouse IgG secondary antibody (Biosource, Camarillo, CA).

Experimental model of airways-induced pulmonary tuberculosis in mice
M. tuberculosisH37Rv was grown in Middlebrook 7H9 medium (Difco Laboratories) supple-
mented with OADC (Difco Laboratories). After 1 month of culture, mycobacteria were har-
vested, adjusted to 2.5x105 bacteria in 100μl sterile endotoxin-free saline solution (SS),
aliquoted, and maintained at -70°C until used. Before use, bacteria were recounted and their vi-
ability checked. We used the murine model of airways infection as described before, with some
modifications[44]. Briefly, male BALB/c mice from 6–8 weeks of age were anaesthetized with
sevoflurane (Abbott laboratories), then 2.5 x 105 viable bacilli were inoculated in 100 μl sterile
SS using an intra-tracheal probe to ensure delivery into the airways. Control animals were
treated exactly the same except that were inoculated only with sterile SS. All animal work were
performed in accordance to the guidelines of the Mexican constitution law NOM 062-200-
1999, and approval of the Ethical Committee for Experimentation in Animals of the National
Institute of Medical Sciences and Nutrition in Mexico (CINVA), permit number: 224. Mice
were then maintained in cages fitted with microisolators in a P-3 biosecurity level facility.

Male BALB/c mice, 6–8 weeks old, were purchased from Jackson Laboratories. Priming im-
munization was done by footpad injection of 5μg of α-DEC-ESAT mAb and 10μg of poly I:C
as adjuvant. Four weeks later intranasal boost immunization was given using the same dose of
fusion antibody and adjuvant. Two weeks after boosting, mice were challenged with virulent
Mtb H37Rv as described above. Control groups of mice received similar doses of poly I:C
combined with isotype control mAb attached to ESAT (Iso-ESAT), or PBS, under the same
immunization protocol.

Detection of ESAT-6-specific IFN-γ producing T cells by flow cytometry
Spleen, lungs, mediastinal and inguinal lymph nodes cell suspensions were stimulated with
one of three different ESAT-6 pool peptides (2μg/μL) in the presence of 1μg/μl costimulatory
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α-CD28 (clone 37.51) for 6h at 37°C, adding Brefeldin A (BFA) (10 μg/ml) for the last 4h to
allow accumulation of intracellular cytokines. Cells were washed, incubated 10 min at 4°C with
Power Block reagent to block Fc receptors, washed, and stained with fluorochrome-coupled
mAbs for 15 min at 4°C. Cells were fixed, permeabilized, and stained with an α-IFN-γmAb for
15 min at room temperature in Permwash 1X, resuspended in FACS buffer and 100,000 live

Fig 1. Immunization with α-DEC-ESAT hybrid antibody induces Th1 responses to ESAT-6 in the lungs andmediastinal lymph nodes of non-
infectedmice. A) A fusion antibody was generated to murine DEC205, genetically coupled to ESAT-6 and produced by transfected 293T cells. This Ab (α-
DE6) presented an electrophoretic delay (left and middle figures), while binding to surface DEC205 on DEC205-transfected CHO cells was not affected
(FACS histograms in the figure to the right). B) The ESAT-6 peptide library is depicted here to illustrate the distribution of the three pools of peptides that were
used to stimulate cell suspensions from the different tissues examined, as indicated. Control unstimulated cell suspensions treated with culture medium
alone are indicated with (M) while those treated with ESAT-6 pool 1 of peptides are indicated with (p1). C) and D) The IFN-γ production by ESAT-6-specific
CD4+ T cells is shown as dot plots in (C), and as integrated results of the experiments performed for the various tissues assessed in (D). Data are presented
as mean plus standard error and percentage of IFN-γ producing T cells. (*) represents P<0.05; (**) indicates P<0.01; (***) represents P<0.001. All bars
represent uninfected mice treated with α-DEC-ESAT (white bars) or untreated (gray bars). MedLN = Mediastinal lymph nodes, IngLN = Inguinal lymph nodes.

doi:10.1371/journal.pone.0124828.g001
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CD3+-gated cells were acquired on a Dako Cyan Flow Cytometer. Data were analyzed with
FlowJo Software (Tree Star, Inc., San Carlos, CA). As positive controls for IFN-γ production
we used cell suspensions stimulated with α-CD3 and α-CD28 antibodies.

Antibodies, reagents, and ESAT-6 peptide library
Monoclonal antibodies α-CD3-FITC (BD Pharmingen 553062), α-CD4-PerCP (BD Pharmin-
gen 553052), and α-IFNγ-APC (BD Pharmingen 554413) were obtained from BD Biosciences
(San Jose, California, USA). Intracellular staining was performed using the BD permeabiliza-
tion kit Cytofix/Cytoperm—Permwash (BD Biosciences 554714). CFSE (21888) and PKH26
(PKH26-GL) fluorochrome labels were purchased from Sigma-Aldrich (Saint Louis, MO,
USA) and cell staining was performed as suggested by manufacturers. BFA was obtained from
Sigma-Aldrich (St. Louis, MO), and PowerBlock reagent from Biogenex (HK085-5K). ESAT-6
library of overlapping peptides (staggered by 4 amino acids spanning the entire ESAT-6) were
synthesized by the Proteomics Resource Center (The Rockefeller University). The ESAT-6 pep-
tide library was resuspended at 1 mg/ml of each peptide in 100% DMSO, the library was divid-
ed into three pools of 9–8 peptides each, spanning amino acids 1–36 (pool 1), amino acids
25–65 (pool 2), and amino acids 57–96 (pool 3) (Fig 1B).

Quantification of mycobacterial Colony-Forming Units (cfu) in lungs
Lungs were homogenized using a polytron homogenizer (Kinematica, Luzern, Switzerland)
then diluted with 0.05% tween-80 to a final volume of 1mL. Three consecutive logarithmic di-
lutions were made from this homogenate and 10μL of each dilution were plated by duplicate
on Bacto Middlebrook 7H10 agar (Difco, Detroit, MI, USA) enriched with oleic acid, albumin,
dextrose, and catalase. Plates were then incubated at 37°C and 5% of CO2 for 21 days. Total
lung CFU was determined by adjusting colony counts, performed visually under dissecting mi-
croscope, to the dilution factor and final volume.

Lung histology
For histological evaluations, the lungs were infused with 80% OCT in PBS, flash frozen in liq-
uid nitrogen, and preserved at -80 C. 7μm cryosections were obtained in a Leica CM 1900 cryo-
stat and stained with hematoxylin and eosin (Sigma-Aldrich). The area of lung tissue affected
by cellular infiltrate was measured with Zidas Zeiss image analysis system. A minimum of two
sections per lung per group was were used.

In vivo target cell killing during airways infection withM. tuberculosis
H37Rv
To trace the killing of target cells loaded with different mycobacterial antigens, we labelled sple-
nocytes obtained from a naïve mouse using the combination of two fluorescent dyes (PKH26,
red fluorescence; CFSE, green fluorescence). Two types of target cells were generated, one co-
stained with PKH26 (Sigma-Aldrich, St. Louis, MO) and 500 nM of CFSE (Molecular Probes,
Inc. USA) and the other stained with 5 μM or 500nM CFSE. The latter population of target
cells (cells labelled with CFSE only) were then incubated for 1h with ESAT-6 peptide pool 1
(10 μg/mL—CFSE 500nM). After washing the peptide, both target cell types were adjusted and
mixed to 1.5 x 106 cells for each population (1:1 ratio) in 500 μL of sterile PBS. Adjusted target
cells were i.v. transferred into groups of uninfected and infected mice. After 12h of target cell
transfer, spleen, lungs, mediastinal and inguinal lymph nodes cell suspensions were obtained.
Percentage for each target cell subpopulations was measured by flow cytometry, and killing
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rate for peptide-pulsed target populations was calculated according to the formula[45]:

Killing rate ¼ 100�
%Ag pulsed cells in infected mouse
%Unpulsed cells in infected mouse

%Ag pulsed cells in uninfected mouse
%Unpulsed cells in uninfected mouse

 !
� 100

" #

Statistical analysis
Groups consisted of 3 to 5 mice per time point. Results are expressed as the mean ± SE. Differ-
ences between groups were analysed using one-way ANOVA test with Tuckey’s post-test using
GraphPad Prism 5.0. In the figures, p values of� 0.05 are labeled with a single asterisk (�) in
contrast to p values of�0.01 (��) or�0.001 (���).

Results

Prime-boost immunization with α-DEC-ESAT mAb induces CD4+ IFN-γ-
producing T cells against ESAT-6 p1-peptides in uninfected mice
To determine an immunization protocol that induced ESAT-6-specific IFN-γ+ T cells we per-
formed subcutaneous immunization in the footpads of naive uninfected mice with α-DEC-
ESAT. Four weeks after immunization, splenocytes were stimulated for 6h with ESAT-6 pep-
tide pools (BFA was added after 2h of stimulation) and intracellular IFN-γ staining was
performed for flow cytometry analysis. With this immunization protocol the observable IFN-γ
production by T cells was low and no differences were seen between α-DEC-ESAT mAb treat-
ed mice and control groups (data no shown). Positive controls showed high levels of IFN-γ in
both CD4+ and CD8+ T cells (S1A Fig) from lungs, spleen, mediastinal lymph nodes (MedLN)
and inguinal lymph nodes (IngLN).

We hypothesized that induction of specific T cell clones required more than one dose of α-
DEC-ESAT mAb, therefore we did a prime-boost immunization protocol. After four weeks of
subcutaneous priming, intranasal boost immunization was given using the same dose of anti-
gen and adjuvant as for the priming immunization. One week later we measured the ESAT-
6-specific T cell responses in the lungs, spleen, mediastinal and inguinal lymph nodes. Com-
pared to control groups, in mice treated with a-DEC-ESAT the percentage of IFN-γ+ CD4+ T
cells after stimulation with ESAT-6 p1 peptides was significantly increased in the lungs
(p<0.001), MedLN (p<0.001), IngLN (p<0.001) and spleen (p<0.05) cell suspensions (Fig 1C
and 1D). Very low levels of IFN-γ production were observed in p1-ESAT6 stimulated CD8+ T
cells. Of note, the percentage of IFN-γ+ cells for each T cell subset (CD8+, CD4+) observed after
stimulation with p2- (0.01%, 0.07%) or p3- (0.01%, 0.04%) ESAT-6 peptides (S1B Fig)
showed no differences when compared to unstimulated cells (0.03%, 0.08%). We conclude
that two doses of α-DEC-ESAT are required to induce specific T cell clones against ESAT-6
p1-peptides.

ESAT-6 targeting to DEC-205+ APCs counteracts the delayed
appearance of specific T cell responses during experimental airways
tuberculosis infection
To assess the effect of α-DEC-ESAT treatment in Mtb airways infection, we infected mice with
Mtb H37Rv bacilli two weeks after boost immunization. At day 14 after infection, the percent-
age of IFN-γ+ CD4+ T cells is higher in the lungs of mice treated with α-DEC-ESAT than in
non α-DEC-ESAT-treated mice (Fig 2A). As expected, α-DEC-ESAT treatment induced IFN-γ
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production against the immunodominant ESAT-6 epitope (p1 peptides) (Fig 2A, d14 p1). At
the chronic phase of infection (d60) we observed no differences in lung IFN-γ+ CD4+ T cells as
compared to controls (Fig 2A, d60). In the case of lung CD8+ T cells at 14 days of infection,
unstimulated CD8+ cells showed elevated IFN-γ production, however, CD8 cells stimulated
with p1 peptides showed robust IFN-γ production (Fig 2B, d14). Unlike lung CD4+ T cells, the
production of IFN-γ by CD8+ T cells lasted through the chronic phase of infection (Fig 2B,
d60), although the differences between unstimulated cells and p1-stimulated cells are not statis-
tically significant the trend shows an increased percentage of IFN-γ+ CD8+ T cells in α-DEC-
ESAT-treated mice. The production of IFN-γ by CD4+ and CD8+ T cells in the secondary
lymphoid organs analyzed was very low and no differences were observed amongst groups of
stimulated cells (Fig 2C–2H).

Fig 2. α-DEC-ESAT treatment increases IFN-γ+ T cells in the lung during the acute phase of experimental tuberculosis. The production of IFN-γ by
CD4+ and CD8+ T cells was assessed in different tissues at two time-points during the experimental Mtb infection. α-DEC-ESAT treatment increased the
percentages of IFN-γ+ CD4+ (A) and CD8+ (B) T cells in the lungs, during the acute (day 14) but not during the chronic (day 60) phase of the disease. In the
lymphoid organs analyzed such as mediastinal lymph nodes (MedLN; C-D), inguinal lymph nodes (IngLN; E-F), and spleen (G-H), we observed very low
levels of IFN-γ production either by CD4+ (left side panels) or CD8+ (right side panels) T cells. Individual mice were analyzed and 3–5 mice were used per
group. Data are presented as mean plus standard error. (*) indicates P < 0.05. All bars represent groups of infected mice with different treatments. Black
bars: untreated mice (Inf/No-Tx); white bars: α-DEC-ESAT-treated mice (Inf/DE6-Tx); stripped bars: mice treated with isotype control antibody conjugated
with ESAT-6 (Inf/IsoE6-Tx). Cell suspensions were cultured either with medium alone (M) or medium with ESAT-6 pool 1 of peptides (p1) as detailed in
Materials and Methods. MedLN = Mediastinal lymph nodes, IngLN = Inguinal lymph nodes.

doi:10.1371/journal.pone.0124828.g002
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Increased in vivo CTL killing against ESAT-6 p1-loaded target cells in
the lungs of α-DEC-ESAT mAb treated mice
To assess the effect of ESAT-6 targeting to DEC205+ APC on cytotoxic T cell responses, we
performed the in vivo CTL killing assay in the lungs, spleen, MedLN, and IngLN, against
target cells loaded in vitro with ESAT-6 p1 peptides. Our results showed that in the lungs of
α-DEC-ESAT treated mice, the killing rate for p1-loaded target cells at day 14 post-infection
was doubled compared to the killing rate observed in control groups (Fig 3A). Sixty days after
infection the killing rate of target cells in the lungs decreased, however, this rate remained sig-
nificantly higher than in Iso-ESAT—treated mice (Fig 3B). In the lymphoid organs assessed
(mediastinal and inguinal lymph nodes, and spleen), we found no differences in in vivo CTL
killing amongst the different treatment groups (Fig 3C–3H), with one exception, in the spleen
at day 60 the killing rate for p1-loaded target cells was significantly higher in α-DEC-ESAT
treated group when compared to the Iso-ESAT—treated group (Fig 3H).

Bacterial burden and cellular infiltrate in the lungs of α-DEC-ESAT-
treated mice
To test the possibility of in situ immune protection induced by α-DEC-ESAT treatment we
measured both the cell infiltrate and the bacterial burden in the lungs. During the acute phase
(day 14) of infection, very few pneumonic areas, mostly perivascular, were found in the lungs
of all groups tested (Fig 4A). However, the Mtb load in the lungs of untreated mice was 3-fold
higher than that of α-DEC-ESAT treated animals (Fig 4B).

At the chronic phase of infection, α-DEC-ESAT-immunized mice showed more infiltrate
than untreated or than isotype control mAb-treated mice (Fig 4C); however, tissue damage was
more evident in the lungs of untreated animals.

Of note, at day 60 the lungs of mice that were immunized with α-DEC-ESAT showed lower
mycobacterial burden (~50% less) than mice infected but not treated with α-DEC-ESAT (Fig
4D). Our histological evaluation revealed a prominent cellular infiltrate (Fig 4E) in α-DEC-
ESAT treated group. In light of our other findings, elevated IFN-γ production and CTL activity,
we suggest these results might be the consequence of a robust cellular immune response within
the mycobacterial target organ.

Discussion
Tuberculosis is a re-emerging global health problem that yearly causes around 1.7 million
deaths. Theoretically, Mtb success as a human pathogen might rely on evasion mechanisms
and on counteracting immune responses initiated early upon the natural process of infection.
For instance, immune evasion mechanisms already shown for mycobacteria include interrup-
tion of phagosome/lysosome maturation[12,13], downregulation of proinflammatory cyto-
kines[1,39], inhibition of cytotoxicity[17], and more recently described, an active delay of the
induction of specific T cell responses [28,46]. The lack of a more efficacious vaccine has led to
increased efforts to understand both the host-pathogen interactions in vivo and the pathogene-
sis of tuberculosis.

Recent works indicate that Mtb airways infection delays the onset of T cell activation in the
mediastinal lymph nodes. In fact, the peak influx of DCs to the regional lymph nodes and of
IFN-γ producing T cells to the lungs occurs around the third week post-Mtb infection [20,47].
This contrasts with other, similar infectious models where DCs accumulate much earlier, in
about 24–48 h [48,49]. Inducing T cell IFN-γ production before 3 weeks post-infection might
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limit mycobacterial growth in the lungs; for example, by i.v. inoculation of Mtb[50] or by trans-
ferring ESAT-6-specific tg-TCR T cells[5,50].

Dendritic cells are widely distributed in mucosal and epithelial surfaces and can be mobi-
lized to efficiently present antigens and prime naïve T cells, therefore DCs are good candidates

Fig 3. Lung in vivo target cell killing (CTL) rate in α-DEC-ESAT-treatedmice is increased against ESAT p1 pool-loaded target cells. The CTL activity
was assessed in vivo at day 14 (left side panels: A, C, E, G) and day 60 (right side panels: B, D, F, H) after infection with virulent Mtb H37Rv. Two types of
target cells were generated and stained differentially with CFSE alone or with CFSE plus PKH26. The target cells labeled with CFSE only were loaded with
ESAT-6 pool 1 (p1) of peptides. Prior to transfer into different groups of Mtb-infected mice, both subsets of target cells were combined in equal proportions.
The organs evaluated were the spleen, lungs, mediastinal and inguinal lymph nodes frommice treated with α-DEC-ESAT fusion antibody (Inf/DE6-Tx, white
bars); and mice which received the isotype control antibody conjugated with ESAT-6 (Inf/IsoE6-Tx, stripped bars). Individual mice were analyzed and 3–5
mice were used per experimental group. Data are presented as mean plus standard error and percentage of cytotoxicity was calculated as indicated in
Methods. (*) indicates P<0.05. All bars represent infected mice with different treatments for each group, as indicated.

doi:10.1371/journal.pone.0124828.g003
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to target microbial antigens for prophylaxis. Using monoclonal antibodies to target antigens to
DCs might be a new way to enhance and perhaps to accelerate protective T cell responses and
circumvent the natural, adaptive evasion mechanisms developed by pathogens. Targeting Ag
to DCs has demonstrated that, compared to standard procedures, very low Ag doses are re-
quired to induce vigorous, Ag-specific T cell responses [33,51,52]. Besides, by direct delivery to
DCs, Ag targeting limits unnecessary Ag diffusion and perhaps more important, excessive Ag
degradation by macrophages [53,54]. Consequently, this increases the absolute amount of Ag
available in the DC population, likely making Ag presentation for infrequent Ag-specific T
cells much more efficient. Furthermore, direct Ag targeting to certain endocytic receptors ex-
pressed by DCs (e.g. DEC205) might circumvent the risk of potentially evasive mechanisms of
pathogens during the natural process of infection.

In our study, we targeted ESAT-6, a mycobacterial antigen, to DEC205+ APCs and assessed
the effects over protection-associated T cell responses, namely IFN-γ production and CTL

Fig 4. α-DEC-ESAT-treatedmice show reduced bacterial burden and increased cellular infiltrate in the lungs. Pulmonary mycobacterial load (CFUs/
lung) and cellular infiltrate (% pneumonic areas) were quantified at two time points during Mtb infection in the different experimental groups. Horizontally
stripped bars indicate uninfected non-immunized mice (No-Inf). All other bars represent infected mice with different treatments. Black bars: untreated mice
(Inf/No Tx); white bars: α-DEC-ESAT-treated mice (Inf/DE6-Tx); diagonally stripped bars: mice treated with isotype control antibody-ESAT (Inf/IsoE6-Tx).
Quantification of the cellular infiltrate during the acute infection is shown in (A) while that of the chronic stage is shown in (C). The bacterial burden expressed
as CFUs per lung is shown in (B) for the acute stage of the infection and in (D) for the chronic phase. (E) Representative picture of HE staining of lungs from
infected mice which were α-DEC-ESAT-untreated (-) or α-DEC-ESAT-treated (+). Individual lungs were analyzed by duplicate and 3 mice were used per
group. Data are presented as mean plus standard error. (*) Represents P<0.05.

doi:10.1371/journal.pone.0124828.g004
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activity. In the mouse lungs, DEC205 is expressed by macrophages and a subset of epithelia-as-
sociated DCs; in our experimental design, giving α-DEC-ESAT-6 intranasally would target
both DCs and macrophages, however only the former is capable to migrate and prime T cells
in the draining lymph node [55]. ESAT-6 is a secreted mycobacterial protein present only in
pathogenic mycobacteria thus absent in BCG[56] (the vaccine most widely used). Besides its
association with virulence, ESAT-6 induces strong Th1-type T cell responses and in vivo pro-
tection in certain models [42,43]. Our results showed that targeting ESAT-6 to DEC205+ APCs
induced IFN-γ production in T cells and an increase in in vivo target cell killing, thus we sur-
mise that ESAT-6 targeting ultimately leads to efficient Ag presentation by DEC205+ APCs.

In uninfected mice that received two doses of α-DEC-ESAT, ESAT-p1-specific IFN-γ+ T
cells were readily induced in all the organs tested. Considering the potential size of the TCR
repertoire[57], the IFN-γ response obtained from polyclonal stimulation, the approximate
quantity of ESAT-6 delivered in 5μg of α-DEC-ESAT (~370ng), and the percentage of IFN-γ+

specific-T cells obtained after ESAT-6 targeting to DEC205+ APCs, suggests that α-DEC-ESAT
treatment is an effective strategy to induce activation of infrequent Ag-specific CD4+ T
cells. Indeed, these results agree with previous reports showing that either OVA or the myco-
bacterial Ag85 targeting to DEC205+ cells, readily promotes the proliferation of specific T cells
[35,51,58].

In α-DEC-ESAT-treated animals, we observed that at 14 days post-infection, and in con-
trast with results obtained in α-DEC-ESAT-untreated mice, the lungs had a high percentage of
ESAT-6-specific IFN-γ-producing T cells, elevated in vivo target cell killing, and a considerable
reduction of lung bacterial burden.

We hypothesize that, in α-DEC-ESAT-treated mice, a relatively high percentage of activated
ESAT-6-specific memory T cells might be available before infection, during the span between
boost immunization and the infection. During the first three weeks after infection, Mtb secretes
ESAT-6 into the lungs, permitting effector p1-specific T cells to be rapidly recruited to the
lungs[59] of α-DEC-ESAT-treated mice, a process that would only occur until 21 days post-
infection in untreated mice. The increase of IFN-γ production in the lungs might favor a local
proinflammatory microenvironment, as well as migration and maturation of Mtb-Ag-loaded
DC to regional (mediastinal) lymph nodes where activation of broader Mtb-specific IFN-γ-
producing T cell responses may occur.

In untreated mice, our model of pulmonary tuberculosis at the chronic infection stage (d60)
is characterized by elevated lung CFUs and by increased production of IL-4 while IFN-γ pro-
duction remains elevated[60,61]. In our experiments, at day 60 post-infection the CD8+ T cell
responses (IFN-γ production and in vivo CTL killing) in the α-DEC-ESAT-treated mice re-
mained increased, likely contributing to mycobacterial control. In agreement with previous re-
ports[35], only CD8+ T cells from α-DEC-ESAT treated mice showed high levels of IFN-γ in
the lungs, likely because targeting antigens to DEC205 receptor favors a more prolonged
MHC-I-antigen presentation in vivo.

In vivo CTL killing rate has been barely assessed in experimental pulmonary tuberculosis. In
the in vivo CTL killing assays, CTL activity is indirectly measured by the disappearing of target
cells loaded with specific microbial antigens relative to target cells that contain no microbial an-
tigens. During infection, killing of Mtb infected cells leads to bacterial death or to uptake of
bacilli by activated macrophages[62]. While CD4+ T cells limit Mtb infection during the acute
phase of infection, cytotoxic and IFN-γ producing CD8+ T cells seem the main protective sub-
population during the chronic phase[63]. Antigen targeting to DEC205+ cells induces a more
prolonged antigen presentation via MHC-I[35], thus promoting specific-CD8+ T cell activation
and, probably, increased in vivo CTL killing. Indeed, in our study, a greater rate of in vivo
p1-loaded target cell elimination is seen in the lungs of mice treated with α-DEC-ESAT than in
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(α-DEC-ESAT) untreated mice. Presumably the cytolysis observed is mediated by ESAT-
6-specific T cells generated after α-DEC-ESAT immunization. At day 60 post-infection, in vivo
target cell killing in the spleen appears increased, this was expected at this time point since
the infection is disseminated and a systemic immune response is generated trying to contain
the infection.

Finally, the efficacy of this approach, antigen targeting in vivo using monoclonal antibodies
to DCs, has been barely studied in experimental tuberculosis. While preparing this manuscript,
one report showed that targeting the mycobacterial Ag85 to DEC205+ APCs increased IFN-γ
production but showed limited effect on the bacterial load. However, neither lung histopathol-
ogy nor in vivo CTL killing assays were assessed in the study mentioned above. Our results re-
vealed that antigen selection can have important, differential effects upon the outcome of this
strategy. ESAT-6 targeting to DEC205+ APCs prior to infection importantly reduces the onset
time for specific-CD4+ and CD8+ T cell responses, correlating with cellular infiltrate, in vivo
CTL killing assays and, ultimately, with reduced bacterial load in the lungs. Even though we
immunized with rather small amounts of ESAT-6, an antigen associated with mycobacterial
virulence and with restricted recognition by T cells, targeting to DEC205+ APCs induced T cell
responses and a significant reduction in bacterial burden in situ in the Mtb target organ.

Supporting Information
S1 Fig. IFN-γ production by cell suspensions stimulated with α-CD3 antibody, ESAT-6 p2
or p3 peptide pools in different tissues of non-infected mice. Lung, spleen, mediastinal and
inguinal lymph nodes cell suspensions were stimulated ex-vivo. Representative dot plots of
IFN-γ production under (A) polyclonal stimulation with α-CD3 antibody or (B) peptide pool
p2 or peptide pool p3 of ESAT-6 peptide library. No IFN-γ is induced with either p2 or p3
peptide pools.
(TIF)
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