41 research outputs found

    Extraterrestrial Moessbauer Spectroscopy: More than Three Years of Mars Exploration and Developments for Future Missions

    Get PDF
    The NASA Mars Exploration Rovers (MER), Spirit and Opportunity, landed on the Red Planet in January 2004. Both rovers are equipped with a miniaturized Moessbauer spectrometer MIMOS II. Designed for a three months mission, both rovers and both Moessbauer instruments are still working after more than three years of exploring the Martian surface. At the beginning of the mission, with a landed intensity of the Moessbauer source of 150 mCi, a 30 minute touch and go measurement produced scientifically valuable data while a good quality Moessbauer spectrum was obtained after approximately eight hours. Now, after about five halflives of the sources have passed, Moessbauer integrations are routinely planned to last approx.48 hours. Because of this and other age-related hardware degradations of the two rover systems, measurements now occur less frequently, but are still of outstanding quality and scientific importance. Summarizing important Moessbauer results, Spirit has traversed the plains from her landing site in Gusev crater and is now, for the greater part of the mission, investigating the stratigraphically older Columbia Hills. Olivine in rocks and soils in the plains suggests that physical rather than chemical processes are currently active

    Cultures and Strategies in the Regulation of Nanotechnology in Germany, Austria, Switzerland and the European Union

    Get PDF
    This interdisciplinary, social scientific analysis of the regulatory discourse on nanotechnology in the three German-speaking countries of Germany, Austria and Switzerland and in the EU between 2000 and 2013 has shown three distinct phases, characterised by shifts in the configuration of actors and in the thematic scope from nanotechnology to nano-materials. Compared to modes of governance based on traditional statutory law, modes of governance based on less binding forms of soft law and self-regulation (like codes of conduct, guidelines and certification systems) and new modes of governance (like assessment studies, risk management frameworks as well as participatory and cooperative forms of communication and negotiation) have gained importance. Despite some similarities, two different cultures in governing nanotechnology can be distinguished: a product-oriented culture in statutory regulations (when speaking about products, the article is also referring to substances) and a risk-based culture in applying soft law based on new modes of governance. In addition, the different regulatory cultures have led to four strategic approaches: modes of governance mainly based on hard law and soft law at the EU level, modes of governance mainly based on cooperative and self-regulatory approaches in Germany, cooperative governance approaches in Austria and modes of governance mainly based on self-regulatory and soft law approaches in Switzerland

    New insights into the mineralogy and weathering of the Meridiani Planum meteorite, Mars

    Get PDF
    Meridiani Planum is the first officially recognized meteorite find on the surface of Mars. It was discovered at and named after the landing site of the Mars Exploration Rover Opportunity. Based on its composition, it was classified as a IAB complex iron meteorite. Mössbauer spectra obtained by Opportunity are dominated by kamacite (a-Fe-Ni) and exhibit a small contribution of ferric oxide. Several small features in the spectra have been neglected to date. To shed more light on these features, five iron meteorite specimens were investigated as analogs to Meridiani Planum with a laboratory Mössbauer setup. Measurements were performed on (1) their metallic bulk, (2) troilite (FeS) inclusions, (3) cohenite ((Fe,Ni,Co)3C) and schreibersite ((Fe,Ni)3P), and (4) corroded rims. In addition to these room-temperature measurements, a specimen from the Mundrabilla IAB-ungrouped meteorite was measured at Mars-equivalent temperatures. Based on these measurements, the features in Meridiani Planum spectra can be explained with the presence of small amounts of schreibersite and ⁄ or cohenite and iron oxides. The iron oxides can be attributed to a previously reported coating on Meridiani Planum. Their presence indicates weathering through the interaction of the meteorite with small amounts of water

    Properties and distribution of paired candidate stony meteorites at Meridiani Planum, Mars

    Get PDF
    The Mars Exploration Rover Opportunity investigated four rocks, informally dubbed Barberton, Santa Catarina, Santorini, and Kasos, that are possible stony meteorites. Their chemical and mineralogical composition is similar to the howardite, eucrite, and diogenite group but with additional metal, similar to mesosiderite silicate clasts. Because of their virtually identical composition and because they appear to represent a relatively rare group of meteorites, they are probably paired. The four rocks were investigated serendipitously several kilometers apart, suggesting that Opportunity is driving across a larger population of similar rock fragments, maybe a meteorite strewn field. Small amounts of ferric Fe are a result of weathering. We did not observe evidence for fusion crusts. Four iron meteorites were found across the same area. Although mesosiderites are stony irons, a genetic link to these irons is unlikely. The stony meteorites probably fell later than the irons. The current atmosphere is sufficiently dense to land such meteorites at shallow entry angles, and it would disperse fragments over several kilometers upon atmospheric breakup. Alternatively, dispersion by spallation from an impacting meteoroid may have occurred. Santa Catarina and a large accumulation of similar rocks were found at the rim of Victoria crater. It is possible that they are associated with the impactor that created Victoria crater, but our limited knowledge about their distribution cannot exclude mere coincidence

    Visible and near-infrared multispectral analysis of geochemically measured rock fragments at the Opportunity landing site in Meridiani Planum

    Get PDF
    We have used visible and near‐infrared Panoramic Camera (Pancam) spectral data acquired by the Opportunity rover to analyze 15 rock fragments at the Meridiani Planum landing site. These spectral results were then compared to geochemistry measurements made by the in situ instruments Mössbauer (MB) and Alpha Particle X‐ray Spectrometer (APXS) to determine the feasibility of mineralogic characterization from Pancam data. Our results suggest that dust and alteration rinds coat many rock fragments, which limits our ability to adequately measure the mineralogy of some rocks from Pancam spectra relative to the different field of view and penetration depths of MB and APXS. Viewing and lighting geometry, along with sampling size, also complicate the spectral characterization of the rocks. Rock fragments with the same geochemistry of sulfate‐rich outcrops have similar spectra, although the sulfate‐rich composition cannot be ascertained based upon Pancam spectra alone. FeNi meteorites have spectral characteristics, particularly ferric oxide coatings, that generally differentiate them from other rocks at the landing site. Stony meteorites and impact fragments with unknown compositions have a diverse range of spectral properties and are not well constrained nor diagnostic in Pancam data. Bounce Rock, with its unique basalt composition, is easily differentiated in the Pancam data from all other rock types at Meridiani Planum. Our Pancam analyses of small pebbles adjacent to these 15 rock fragments suggests that other rock types may exist at the landing site but have not yet been geochemically measured

    The MER Mossbauer Spectrometers: 40 Months of Operation on the Martian Surface

    Get PDF
    The primary MER objectives have been successfully completed. The total integration time of all MB measurements exceeds the duration of the primary 90-sols-mission for Spirit's MB spectrometer, and approaches this value for Opportunity's MB spectrometer. Both MB spectrometers continue to accumulate valuable scientific data after three years of operation (data is available for download [13]) The identification of aqueous minerals such as goethite in Gusev crater and jarosite at Meridiani Planum by the MER Mossbauer spectrometers is strong evidence for past water activity at the two landing sites

    Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate

    Get PDF
    Geochemical diversity of rocks and soils has been discovered by the Alpha Particle X-Ray Spectrometer (APXS) during Spirit’s journey over Husband Hill and down into the Inner Basin from sol 470 to 1368. The APXS continues to operate nominally with no changes in calibration or spectral degradation over the course of the mission. Germanium has been added to the Spirit APXS data set with the confirmation that it occurs at elevated levels in many rocks and soils around Home Plate. Twelve new rock classes and two new soil classes have been identified at the Spirit landing site since sol 470 on the basis of the diversity in APXS geochemistry. The new rock classes are Irvine (alkaline basalt), Independence (low Fe outcrop), Descartes (outcrop similar to Independence with higher Fe and Mn), Algonquin (mafic-ultramafic igneous sequence), Barnhill (volcaniclastic sediments enriched in Zn, Cl, and Ge), Fuzzy Smith (high Si and Ti rock), Elizabeth Mahon (high Si, Ni, and Zn outcrop and rock), Halley (hematite-rich outcrop and rock), Montalva (high K, hematite-rich rock), Everett (high Mg, magnetite-rich rock), Good Question (high Si, low Mn rock), and Torquas (high K, Zn, and Ni magnetite-rich rock). New soil classes are Gertrude Weise (very high Si soil) and Eileen Dean (high Mg, magnetite-rich soil). Aqueous processes have played a major role in the formation and alteration of rocks and soils on Husband Hill and in the Inner Basin

    Discovery of Carbonate-Rich Outcrops in the Gusev Crater Columbia Hills by the MER Rover Spirit

    Get PDF
    The chemical composition, global abundance, distribution, and formation pathways of carbonates are central to understanding aqueous processes, climate, and habitability of early Mars. The Mars Exploration Rover (MER) Spirit analyzed a series of olivine-rich outcrops while descending from the summit region of Husband Hill into the Inner Basin of the Columbia Hills of Gusev Crater to the eastern edge of the El Dorado ripple field in late 2005. Reanalysis of Spirit s mineralogical data from the Moessbauer Spectrometer (MB) and the Miniature Thermal Emission Spectrometer (Mini-TES) and chemical data from the Alpha Particle X-Ray Spectrometer (APXS) in 2010, coupled with new laboratory data for carbonate-bearing samples, lead to identification of carbonate in one of the outcrops (Comanche) [Morris, R.V., et al., Science, 329, 421-424]. The carbonate is rich in magnesium and iron (Mc62Sd25Cc11Rh2, assuming all Ca and Mn is associated with the carbonate) and is a major component of the Comanche outcrops (16 to 34 wt.%). The mineralogical, chemical, and abundance data are constrained in multiple, mutually consistent ways by the MER analyses. For example, a low-Ca carbonate is required by the MB and APXS data and is consistent with Mini-TES data. Three spectral features attributable to fundamental infrared vibrational modes of low-Ca carbonate are present in the Mini-TES spectra of Comanche outcrops. The average composition of Comanche carbonate approximates the average composition of the carbonate globules in Martian meteorite ALH 84001. Analogy with ALH 84001, terrestrial, and synthetic carbonate globules suggests that Comanche carbonate precipitated from aqueous solutions under hydrothermal conditions at near neutral pH in association with volcanic activity during the Noachian era. Comanche outcrop morphology suggests they are remnants of a larger carbonate-bearing formation that evolved in ultramafic rock and then preferentially eroded by a combination of aeolian abrasion and chemical decomposition by exposure to acid-sulfate vapors/solutions. The high carbonate concentration in the Comanche outcrops supports climate models involving a CO2 greenhouse gas on a wet and warm early Mars and subsequent sequestering of at least part of that atmosphere in carbonate minerals

    A de novo paradigm for male infertility

    Get PDF
    Funding Information: (DFG, CRU326) to C.F. and F.T. This project was also supported in part by funding from the Australian National Health and Medical Research Council (APP1120356) to M.K.O.B., by grants from the National Institutes of Health of the United States of America (R01HD078641 to D.F.C. and K.I.A., P50HD096723 to D.F.C.) and from the Biotechnology and Biological Sciences Research Council (BB/S008039/1) to D.J.E. Funding Information: We are grateful for the participation of all patients and their parents in this study. We thank Laurens van de Wiel (Radboudumc), Sebastian Judd-Mole (Monash University), Arron Scott and Bryan Hepworth (Newcastle University) for technical support, and Margot J Wyrwoll (University of Münster) for help with handling MERGE samples and data. This project was funded by The Netherlands Organization for Scientific Research (918-15-667) to J.A.V. as well as an Investigator Award in Science from the Wellcome Trust (209451) to J.A.V. a grant from the Catherine van Tussenbroek Foundation to M.S.O. a grant from MERCK to R.S. a UUKi Rutherford Fund Fellowship awarded to B.J.H. and the German Research Foundation Clinical Research Unit “Male Germ Cells” Publisher Copyright: © 2022, The Author(s).De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10−5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10−4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.publishersversionpublishe

    A de novo paradigm for male infertility

    Get PDF
    Genetics of Male Infertility Initiative (GEMINI) consortium: Donald F. Conrad, Liina Nagirnaja, Kenneth I. Aston, Douglas T. Carrell, James M. Hotaling, Timothy G. Jenkins, Rob McLachlan, Moira K. O’Bryan, Peter N. Schlegel, Michael L. Eisenberg, Jay I. Sandlow, Emily S. Jungheim, Kenan R. Omurtag, Alexandra M. Lopes, Susana Seixas, Filipa Carvalho, Susana Fernandes, Alberto Barros, João Gonçalves, Iris Caetano, Graça Pinto, Sónia Correia, Maris Laan, Margus Punab, Ewa Rajpert-De Meyts, Niels Jørgensen, Kristian Almstrup, Csilla G. Krausz & Keith A. Jarvi.De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10−5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10−4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.This project was funded by The Netherlands Organization for Scientific Research (918-15-667) to J.A.V. as well as an Investigator Award in Science from the Wellcome Trust (209451) to J.A.V. a grant from the Catherine van Tussenbroek Foundation to M.S.O. a grant from MERCK to R.S. a UUKi Rutherford Fund Fellowship awarded to B.J.H. and the German Research Foundation Clinical Research Unit “Male Germ Cells” (DFG, CRU326) to C.F. and F.T. This project was also supported in part by funding from the Australian National Health and Medical Research Council (APP1120356) to M.K.O.B., by grants from the National Institutes of Health of the United States of America (R01HD078641 to D.F.C. and K.I.A., P50HD096723 to D.F.C.) and from the Biotechnology and Biological Sciences Research Council (BB/S008039/1) to D.J.E.info:eu-repo/semantics/publishedVersio
    corecore