6,797 research outputs found

    Spectroscopy of doubly charmed baryons

    Get PDF
    We study the mass spectrum of baryons with two and three charmed quarks. For double charm baryons the spin splitting is found to be smaller than standard quark-model potential predictions. This splitting is not influenced either by the particular form of the confining potential or by the regularization taken for the contact term of the spin-spin potential. We consistently predict the spectra for triply charmed baryons.Comment: 6 pages, 1 figure, accepted for publication in Phys. Rev.

    Ground-state phase diagram of the spin-1/2 square-lattice J1-J2 model with plaquette structure

    Full text link
    Using the coupled cluster method for high orders of approximation and Lanczos exact diagonalization we study the ground-state phase diagram of a quantum spin-1/2 J1-J2 model on the square lattice with plaquette structure. We consider antiferromagnetic (J1>0) as well as ferromagnetic (J1<0) nearest-neighbor interactions together with frustrating antiferromagnetic next-nearest-neighbor interaction J2>0. The strength of inter-plaquette interaction lambda varies between lambda=1 (that corresponds to the uniform J1-J2 model) and lambda=0 (that corresponds to isolated frustrated 4-spin plaquettes). While on the classical level (s \to \infty) both versions of models (i.e., with ferro- and antiferromagnetic J1) exhibit the same ground-state behavior, the ground-state phase diagram differs basically for the quantum case s=1/2. For the antiferromagnetic case (J1 > 0) Neel antiferromagnetic long-range order at small J2/J1 and lambda \gtrsim 0.47 as well as collinear striped antiferromagnetic long-range order at large J2/J1 and lambda \gtrsim 0.30 appear which correspond to their classical counterparts. Both semi-classical magnetic phases are separated by a nonmagnetic quantum paramagnetic phase. The parameter region, where this nonmagnetic phase exists, increases with decreasing of lambda. For the ferromagnetic case (J1 < 0) we have the trivial ferromagnetic ground state at small J2/|J1|. By increasing of J2 this classical phase gives way for a semi-classical plaquette phase, where the plaquette block spins of length s=2 are antiferromagnetically long-range ordered. Further increasing of J2 then yields collinear striped antiferromagnetic long-range order for lambda \gtrsim 0.38, but a nonmagnetic quantum paramagnetic phase lambda \lesssim 0.38.Comment: 10 pages, 15 figure

    One-dimensional metallic behavior of the stripe phase in La2x_{2-x}Srx_xCuO4_4

    Full text link
    Using an exact diagonalization method within the dynamical mean-field theory we study stripe phases in the two-dimensional Hubbard model. We find a crossover at doping δ0.05\delta\simeq 0.05 from diagonal stripes to vertical site-centered stripes with populated domain walls, stable in a broad range of doping, 0.05<δ<0.170.05<\delta<0.17. The calculated chemical potential shift δ2\propto -\delta^2 and the doping dependence of the magnetic incommensurability are in quantitative agreement with the experimental results for doped La2x_{2-x}Srx_xCuO4_4. The electronic structure shows one-dimensional metallic behavior along the domain walls, and explains the suppression of spectral weight along the Brillouin zone diagonal.Comment: 4 pages, 4 figure

    Heavy Quark Fragmentation to Baryons Containing Two Heavy Quarks

    Full text link
    We discuss the fragmentation of a heavy quark to a baryon containing two heavy quarks of mass mQΛQCDm_Q\gg\Lambda_{\rm QCD}. In this limit the heavy quarks first combine perturbatively into a compact diquark with a radius small compared to 1/ΛQCD1/\Lambda_{\rm QCD}, which interacts with the light hadronic degrees of freedom exactly as does a heavy antiquark. The subsequent evolution of this QQQQ diquark to a QQqQQq baryon is identical to the fragmentation of a heavy antiquark to a meson. We apply this analysis to the production of baryons of the form ccqccq, bbqbbq, and bcqbcq.Comment: 9 pages, 1 figure included, uses harvmac.tex and epsf.tex, UCSD/PTH 93-11, CALT-68-1868, SLAC-PUB-622

    On the Mass of Dense Star Clusters in Starburst Galaxies from Spectro-Photometry

    Full text link
    The mass of unresolved young star clusters derived from spectro-photometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar IMF, the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter eta. When we compute eta for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cutoff mass of 25.5 solar mass. We also monitor the rise of color gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the LMC cluster NGC 1818 at an age of 30 Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2 dex. The star formation rate (SFR) derived for the cluster population is then underestimated by from 20 to 50 per cent.Comment: 20 pages, 16 figures, accepted for publication in MNRA

    New Lower Bound on Fermion Binding Energies

    Get PDF
    We derive a new lower bound for the ground state energy EF(N,S)E^{\rm F}(N,S) of N fermions with total spin S in terms of binding energies EF(N1,S±1/2)E^{\rm F}(N-1,S \pm 1/2) of (N-1) fermions. Numerical examples are provided for some simple short-range or confining potentials.Comment: 4 pages, 1 eps figur

    Quantum Dot Potentials: Symanzik Scaling, Resurgent Expansions and Quantum Dynamics

    Get PDF
    This article is concerned with a special class of the ``double-well-like'' potentials that occur naturally in the analysis of finite quantum systems. Special attention is paid, in particular, to the so-called Fokker-Planck potential, which has a particular property: the perturbation series for the ground-state energy vanishes to all orders in the coupling parameter, but the actual ground-state energy is positive and dominated by instanton configurations of the form exp(-a/g), where a is the instanton action. The instanton effects are most naturally taken into account within the modified Bohr-Sommerfeld quantization conditions whose expansion leads to the generalized perturbative expansions (so-called resurgent expansions) for the energy values of the Fokker-Planck potential. Until now, these resurgent expansions have been mainly applied for small values of coupling parameter g, while much less attention has been paid to the strong-coupling regime. In this contribution, we compare the energy values, obtained by directly resumming generalized Bohr-Sommerfeld quantization conditions, to the strong-coupling expansion, for which we determine the first few expansion coefficients in powers of g^(-2/3). Detailed calculations are performed for a wide range of coupling parameters g and indicate a considerable overlap between the regions of validity of the weak-coupling resurgent series and of the strong-coupling expansion. Apart from the analysis of the energy spectrum of the Fokker-Planck Hamiltonian, we also briefly discuss the computation of its eigenfunctions. These eigenfunctions may be utilized for the numerical integration of the (single-particle) time-dependent Schroedinger equation and, hence, for studying the dynamical evolution of the wavepackets in the double-well-like potentials.Comment: 13 pages; RevTe

    Vortex, skyrmion and elliptical domain wall textures in the two-dimensional Hubbard model

    Full text link
    The spin and charge texture around doped holes in the two-dimensional Hubbard model is calculated within an unrestricted spin rotational invariant slave-boson approach. In the first part we examine in detail the spin structure around two holes doped in the half-filled system where we have studied cluster sizes up to 10 x 10. It turns out that the most stable configuration corresponds to a vortex-antivortex pair which has lower energy than the Neel-type bipolaron even when one takes the far field contribution into account. We also obtain skyrmions as local minima of the energy functional but with higher total energy than the vortex solutions. Additionally we have investigated the stability of elliptical domain walls for commensurate hole concentrations. We find that (i) these phases correspond to local minima of the energy functional only in case of partially filled walls, (ii) elliptical domain walls are only stable in the low doping regime.Comment: 7 pages, 6 figures, accepted for Phys. Rev.

    Fluxtube model atmospheres and Stokes V zero-crossing wavelengths

    Get PDF
    First results of the inversion of Stokes I and V profiles from plage regions near disk center are presented. Both low and high spatial resolution spectra of FeI 6301.5 and FeI 6302.5 A obtained with the Advanced Stokes Polarimeter (ASP) have been considered for analysis. The thin flux tube approximation, implemented in an LTE inversion code based on response functions, is used to describe unresolved magnetic elements. The code allows the simultaneous and consistent inference of all atmospheric quantities determining the radiative transfer with the sole assumption of hydrostatic equilibrium. By considering velocity gradients within the tubes we are able to match the full ASP Stokes profiles. The magnetic atmospheres derived from the inversion are characterized by the absence of significant motions in high layers and strong velocity gradients in deeper layers. These are essential to reproduce the asymmetries of the observed profiles. Our scenario predicts a shift of the Stokes V zero-crossing wavelengths which is indeed present in observations made with the Fourier Transform Spectrometer.Comment: To appear in ApJ Letters (1997) (in press
    corecore