

Burner Development and Optimization for High Pressure Entrained Flow Gasifiers

Tobias Jakobs, Manuel Haas, Sabine Fleck, Ulrike Santo, Thomas Kolb

11th International Freiberg Conference 24.-29.09.2023

www.kit.edu

Entrained Flow Gasification Key process for Circular Economy

Karlsruhe Institute of Technology

ITC

Dr.-Ing. Tobias Jakobs 11th International Freiberg Conference, 2023, Rotterdam, NL

5 MW HP-Entrained Flow Gasifier

Goals:

- High carbon conversion at minimum temperature
- Minimum amount of by-products: soot + tar + hydrocarbons
- Allow for efficient and feedstock flexible operation of the gasifier
- ightarrow Otpimize burner-design and operation

Challenges:

- Reacting System at high temperature and pressure
- Wide range of fuel viscosity up to 1000 mPas
- Atomization media serves as reactant
- ➔ interaction of burner operation and stoichiometry

Thermo-Chemical Processes in HP-EFG

11th International Freiberg Conference, 2023, Rotterdam, NL

13.06.2023

Research Entrained Flow Gasifier – REGA

Technical Data

- Reactor length: 3 m
- Inner diameter: 0.28 m
- Wall temperature: 1200 °C
- Pressure: 1 atm
- Gasification medium: O₂/N₂ (x_{O2,max} = 80 v%)

Optical Measurement

- Optical access ports on 4 levels
- Axially movable burner
- Accessible area: z = 0 300 mm

Probe Measurement

• T, y_i, Particles

Reaction Zone Analysis

- Laser beam is expanded to a sheet
- Flame intermediates excited by laser pulse
- Detection of fluorescence by camera
- →Instantaneous, 2D spatially resolved detection of OH

\rightarrow Flame front imaging

→ Experiments at M
_{liq} = 15 kg·h⁻¹ – 5 MW HPEFG operated at 1000 kg·h⁻¹ → Burner Scaling!
 → Correlations reported mostly at M
_{liq} ≤ 20 kg·h⁻¹ → not applicable for a 1000 kg·h⁻¹ burner

[1] M. Haas et al., Entrained flow gasification: Impact of fuel spray distribution on reaction zone structure; Fuel 334 (2023)

Atmospheric Spray Test Rigs – ATMO & BTR

ATMOspheric Spray Test Rig (ATMO)

Applied Measurement Techniques

High-speed camera (HSC)

Set up:

Measurement:

Postprocessing:

Nozzle: Breakup morphology and lenght Measuring plane: Max droplet size

Phase Doppler anemometer (PDA)

50,000 droplets or 60 s 1 full profile + 2 half profiles

8 23.10.2023 Dr.-Ing. Tobias Jakobs 11th International Freiberg Conference, 2023, Rotterdam, NL

Institute for Technical Chemistry – Gasification Technology (ITC)

Approach for Mass-Flow-Scaling

- \succ v_{liq} was kept constant (1.7 m·s⁻¹) while increasing \dot{M}_{liq}
 - ➔ Requires an increase of d_{liq}
- GLR = const. (as process relevant parameter)
 - $\rightarrow \dot{M}_{gas}$ must be increased with \dot{M}_{liq}
 - \rightarrow Adaption of geometry in terms of d_{gas} and s_{gas}
- Being the most relevant char.-Number in terms of atomization We_{aero} is kept constant
 - → requires a decrease in v_{gas} for increasing d_{liq}
- ➤ 4 Nozzles: M_{liq} = 20 / 50 / 100 / 500 kg h⁻¹

Sauter Mean Diameter as function of M_{lig}

→ Keeping We_{aero} = constant not enough to guarantee for constant drop-size

[2] Wachter, Jakobs, Kolb; Mass Flow Scaling of Gas-Assisted Coaxial Atomizers; Appl. Sci.; 2022, doi.org/10.3390/app12042123

1023.10.2023Dr.-Ing. Tobias Jakobs
11th International Freiberg Conference, 2023, Rotterdam, NL

Sauter Mean Diameter as function of We_{aero}

▷ M
 ⁱ_{liq} ↑ (d_{liq} ↑) → Id_{32,m} ↑ for We_{aero} (GLR) = const.
 ▷ v_{gas} ↑ (GLR ↑) → Id_{32,m} ↓ for M
 ⁱ_{liq} (d_{liq}) = const.

We_{aero} = 250 (GLR = 0,36)

 $We_{aero} = 1000$

> SMD can be kept constant for increasing \dot{M}_{liq} (d_{liq}) by adapting We_{aero} and GLR (v_{gas}) > An increase in both parameters (We_{aero} and GLR) is covered by an increase in J_{gas}

[2] Wachter, Jakobs, Kolb; Mass Flow Scaling of Gas-Assisted Coaxial Atomizers; Appl. Sci.; 2022, doi.org/10.3390/app12042123

1123.10.2023Dr.-Ing. Tobias Jakobs
11th International Freiberg Conference, 2023, Rotterdam, NL

Sauter Mean Diameter as function of J_{gas}

➤All liquid mass flows under

investigation show similar trends

towards SMD and \mathbf{J}_{gas}

Exponential fit via least square

method to cover all data

^[2] Wachter, Jakobs, Kolb; Mass Flow Scaling of Gas-Assisted Coaxial Atomizers; Appl. Sci.; 2022, doi.org/10.3390/app12042123

SMD-Correlation for various Massflows

[2] Wachter, Jakobs, Kolb; Mass Flow Scaling of Gas-Assisted Coaxial Atomizers; Appl. Sci.; 2022, doi.org/10.3390/app12042123

Application of the model to design a nozzle

$$ID_{32,m} = A(\dot{M}_{liq}) \cdot e^{-\frac{J_{gas}}{B(\dot{M}_{liq})}} + C(\dot{M}_{liq})$$

> Determination of \dot{M}_{liq} (v_{liq} is set to 1.7 m·s⁻¹) \rightarrow d_{liq}

- > Specification of GLR (e.g. given by process conditions)
- Specification of target Sauter Mean Diameter
- ➢ Required J_{gas} for chosen SMD and M_{liq} can be calculated by the model

> Out of J_{gas} and chosen GLR (\dot{M}_{gas}) the required d_{gas} is determined $\frac{3}{2}$

➔ Nozzle design completed

1423.10.2023Dr.-Ing. Tobias Jakobs
11th International Freiberg Conference, 2023, Rotterdam, NL

daas

Summary and Outlook

Target: Burner Optimization and Development for HPEFG

Summary:

- Spray and flame structure analysis in an atmospheric entrained flow gasifier
- Influence of fuel spray on reaction zone structure observed
- Approach for mass flow scaling of burner nozzles keeping charact. numbers constant
- Increase of liquid mass flow results in an increase in droplet size
- SMD-Correlation that allows for estimation of nozzel operating conditions / design for distinct droplet size

Outlook:

- Extend the range of investigated parameters and thus the validity range of the scaling approach
- Investigation of other burner nozzle designs
- Accompanying investigations in our 5 MW HPEFG focused on the burner near zone

5 MW HPEFG Flame

Dr.-Ing. Tobias Jakobs Institute for Technical Chemistry Karlsruhe Institute of Technology Mail: tobias.jakobs@kit.edu +49 721 608 26763 [1] Flame Structure

[2] Mass-Flow-Scaling

Dr.-Ing. Tobias Jakobs 11th International Freiberg Conference, 2023, Rotterdam, NL