First results of the inversion of Stokes I and V profiles from plage regions
near disk center are presented. Both low and high spatial resolution spectra of
FeI 6301.5 and FeI 6302.5 A obtained with the Advanced Stokes Polarimeter (ASP)
have been considered for analysis. The thin flux tube approximation,
implemented in an LTE inversion code based on response functions, is used to
describe unresolved magnetic elements. The code allows the simultaneous and
consistent inference of all atmospheric quantities determining the radiative
transfer with the sole assumption of hydrostatic equilibrium. By considering
velocity gradients within the tubes we are able to match the full ASP Stokes
profiles. The magnetic atmospheres derived from the inversion are characterized
by the absence of significant motions in high layers and strong velocity
gradients in deeper layers. These are essential to reproduce the asymmetries of
the observed profiles. Our scenario predicts a shift of the Stokes V
zero-crossing wavelengths which is indeed present in observations made with the
Fourier Transform Spectrometer.Comment: To appear in ApJ Letters (1997) (in press