8 research outputs found

    MEJORANDO LA CALIDAD DE LAS IMÁGENES OBTENIDAS CON UN DISPOSITIVO DE RETRODISPERSION DE RAYOS-GAMMA

    Get PDF
    Se han implementado algunos procedimientos estándar de tratamiento digital de imágenes con el fin de aumentar la información obtenida de las imágenes generadas con un dispositivo de retrodispersión de rayos-gamma. Se implementaron tres métodos simples, restar una imagen de referencia, suavizado de la imagen y detección de bordes, y se observó una notable mejoría en la calidad de las imágenes.In order to extract more useful information from images obtained with a Gamma-ray Backscattering imaging device some methods of standard imaging treatment were implemented. Three very simple methods, subtract a reference image, smoothing and edge-detection, were implemented with a clear improvement on the image quality

    Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'

    Get PDF
    Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species

    Use of micro CHP plants to support the local operation of electric heat pumps

    Get PDF
    Fig. 1. Global distribution of chytridiomycosis-associated amphibian species declines. Bar plots indicate the number (N) of declined species, grouped by continental area and classified by decline severity. Brazilian species are plotted separately from all other South American species (South America W); Mesoamerica includes Central America, Mexico, and the Caribbean Islands; and Oceania includes Australia and New Zealand. No declines have been reported in Asia. n, total number of declines by region. [Photo credits (clockwise from top left): Anaxyrus boreas, C. Brown, U.S. Geological Survey; Atelopus varius, B.G.; Salamandra salamandra, D. Descouens, Wikimedia Commons; Telmatobius sanborni, I.D.l.R; Cycloramphus boraceiensis, L.F.T.; Cardioglossa melanogaster, M.H.; and Pseudophryne corroboree, C. Doughty

    Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity

    Get PDF
    Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.B.C.S. and D.B.L. were supported by the Australian National Environmental Science Program. L.B., L.F.S., T.A.K., and B.C.S. were supported by the Australian Research Council (grants FT100100375, LP110200240, and DP120100811), the NSW Office of Environment and Heritage, and the Taronga Conservation Science Initiative. S.C., W.B., A.M., and F.P. were supported by Research Foundation Flanders grants FWO3E001916 and FWO11ZK916N‐11ZK918N and Ghent University grant BOF16/GOA/024. S.C. was supported by Research Foundation Flanders grant FWO16/PDO/019. A.A.A. was supported by the Conservation Leadership Program (0621310), Vicerrectoría de Investigaciones, Universidad de Pamplona-Colombia, and Colciencias (1121-659-44242). T.C. was supported by the Coordination for the Improvement of Higher Education Personnel. A.C. was supported by the Amazon Conservation Association, the Amphibian Specialist Group, the Disney Worldwide Conservation Fund, the Eppley Foundation, the Mohammed bin Zayed Species Conservation Fund, the NSF, the Rufford Small Grants Foundation, and the Swiss National Foundation. I.D.l.R. was supported by the Spanish Government (CGL2014-56160-P). M.C.F. was supported by the NERC (NE/K014455/1), the Leverhulme Trust (RPG-2014-273), and the Morris Animal Foundation (D16ZO-022). S.V.F. was supported by the USFWS Wildlife without Borders (96200-0-G228), the AZA–Conservation Endowment Fund (08-836), and the Conservation International Critically Endangered Species Fund. P.F.Á. was supported by a Postdoctoral Research fellowship from the Mexican Research Council (CONACYT, 171465). T.W.J.G. was supported by the NERC (NE/N009967/1 and NE/K012509/1). J.M.G. was supported by the Universidad San Francisco de Quito (collaboration grants 11164 and 5447). M.H. was supported by scholarships from the Elsa-NeumannFoundation and the German Academic Exchange Service (DAAD). C.A.M. was supported by the Atkinson Center for a Sustainable Future and the Cornell Center for Vertebrate Genomics. G.P.-O. was supported by DGAPA-UNAM and CONACYT while on sabbatical at the University of Otago, New Zealand. C.L.R.-Z. was supported by the NSF (1660311). S.M.R. was supported by a CONACYT Problemas Nacionales grant (PDCPN 2015-721) and a UC Mexus-Conacy cooperative grant. C.S.-A. was supported by the Chilean National Science and Technology Fund (Fondecyt no. 1181758). L.F.T. was supported by the São Paulo Research Foundation (FAPESP 2016/25358-3) and the National Council for Scientific and Technological Development (CNPq 300896/2016-6). J.V. was supported by the NSF (DEB1551488 and IOS-1603808). C.W. was supported by the South African National Research Foundatio

    Revista Divulgación Científica Universidad del Rosario No. 6

    No full text
    Esta publicación tiene la decidida intención de acercar la investigación que realiza la Universidad del Rosario de Bogotá, Colombia, a un gran número de lectores para mostrarles, desde el periodismo científico, el quehacer investigativo de la institución.This publication has the determined intention of bringing the research carried out by the Universidad del Rosario in Bogotá, Colombia, to a large number of readers to show them, from scientific journalism, the investigative work of the institution

    Fig. 2 in Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity

    No full text
    Fig. 2. Taxonomic distribution of chytridiomycosis-associated amphibian declines. Each bar represents one species, and color denotes the severity of its decline. Concentric circles indicate, from inner to outer, order (Caudata or Anura), family, and genus. Full names are given only for families and genera that include>5 and>2 species, respectively; details for all taxa are in table S4. Within each taxonomic level, sublevels are ordered alphabetically. Protruding bars indicate species for which there is evidence of recovery. [Photo credits (left to right): Telmatobius bolivianus, I.D.l.R.; Atelopus zeteki, B.G.; and Craugastor crassidigitus, B.G.

    Empowering Latina scientists

    No full text
    corecore