55 research outputs found

    Photosynthesis, growth, and decay traits in Sphagnum - a multispecies comparison

    Get PDF
    Peat mosses (Sphagnum) largely govern carbon sequestration in Northern Hemisphere peatlands. We investigated functional traits related to growth and decomposition in Sphagnum species. We tested the importance of environment and phylogeny in driving species traits and investigated trade-offs among them. We selected 15 globally important Sphagnum species, representing four sections (subgenera) and a range of peatland habitats. We measured rates of photosynthesis and decomposition in standard laboratory conditions as measures of innate growth and decay potential, and related this to realized growth, production, and decomposition in their natural habitats. In general, we found support for a trade-off between measures of growth and decomposition. However, the relationships are not strong, with r ranging between 0.24 and 0.45 for different measures of growth versus decomposition. Using photosynthetic rate to predict decomposition in standard conditions yielded R-2 = 0.20. Habitat and section (phylogeny) affected the traits and the trade-offs. In a wet year, species from sections Cuspidata and Sphagnum had the highest production, but in a dry year, differences among species, sections, and habitats evened out. Cuspidata species in general produced easily decomposable litter, but their decay in the field was hampered, probably due to near-surface anoxia in their wet habitats. In a principal components analysis, PCA, photosynthetic capacity, production, and laboratory decomposition acted in the same direction. The species were imperfectly clustered according to vegetation type and phylogeny, so that some species clustered with others in the same section, whereas others clustered more clearly with others from similar vegetation types. Our study includes a wider range of species and habitats than previous trait analyses in Sphagnum and shows that while the previously described growth-decay trade-off exists, it is far from perfect. We therefore suggest that our species-specific trait measures offer opportunities for improvements of peatland ecosystem models. Innate qualities measured in laboratory conditions translate differently to field responses. Most dramatically, fast-growing species could only realize their potential in a wet year. The same species decompose fast in laboratory, but their decomposition was more retarded in the field than that of other species. These relationships are crucial for understanding the long-term dynamics of peatland communities

    An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus

    Get PDF
    Introduction. Following on from work on the European bryophyte Red List, the taxonomically and nomenclaturally updated spreadsheets used for that project have been expanded into a new checklist for the bryophytes of Europe. Methods. A steering group of ten European bryologists was convened, and over the course of a year, the spreadsheets were compared with previous European checklists, and all changes noted. Recent literature was searched extensively. A taxonomic system was agreed, and the advice and expertise of many European bryologists sought. Key results. A new European checklist of bryophytes, comprising hornworts, liverworts and mosses, is presented. Fifteen new combinations are proposed. Conclusions. This checklist provides a snapshot of the current European bryophyte flora in 2019. It will already be out-of-date on publication, and further research, particularly molecular work, can be expected to result in many more changes over the next few years.Peer reviewe

    A miniature world in decline: European Red List of Mosses, Liverworts and Hornworts

    Get PDF
    AimThis Red List is a summary of the conservation status of the European species of mosses, liverworts and hornworts, collectively known as bryophytes, evaluated according to IUCN’s Guidelines for Application of IUCN Red List Criteria at Regional Level. It provides the first comprehensive, region-wide assessment of bryophytes and it identifies those species that are threatened with extinction at a European level, so that appropriate policy measures and conservation actions, based on the best available evidence, can be taken to improve their status.ScopeAll bryophytes native to or naturalised in Europe (a total of 1,817 species), have been included in this Red List. In Europe, 1,796 species were assessed, with the remaining 21 species considered Not Applicable (NA). For the EU 28, 1,728 species were assessed, with a remaining 20 species considered NA and 69 species considered Not Evaluated (NE). The geographical scope is continentwide, extending from Iceland in the west to the Urals in the east, and from Franz Josef Land in the north to theCanary Islands in the south. The Caucasus region is not included. Red List assessments were made at two regional levels: for geographical Europe and for the 28 Member States of the European Union.ResultsOverall, 22.5% of European bryophyte species assessed in this study are considered threatened in Europe, with two species classified as Extinct and six assessed as Regionally Extinct (RE). A further 9.6% (173 species) are considered Near Threatened and 63.5% (1,140 species) are assessed as Least Concern. For 93 species (5.3%), there was insufficient information available to be able to evaluate their risk of extinction and thus they were classified as Data Deficient (DD). The main threats identified were natural system modifications (i.e., dam construction, increases in fire frequency/intensity, and water management/use), climate change (mainly increasing frequency of droughts and temperature extremes), agriculture (including pollution from agricultural effluents) and aquaculture.RecommendationsPolicy measures• Use the European Red List as the scientific basis to inform regional/national lists of rare and threatened species and to identify priorities for conservation action in addition to the requirements of the Habitats Directive, thereby highlighting the conservation status of bryophytes at the regional/local level.• Use the European Red List to support the integration of conservation policy with the Common Agricultural Policy (CAP) and other national and international policies. For example, CAP Strategic Plans should include biodiversity recovery commitments that could anticipate, among others, the creation of Important Bryophyte Areas. An increased involvement of national environmental agencies in the preparation of these strategic plans, and more broadly in ongoing discussions on the Future CAP Green Architecture, would likely also ensure the design of conservation measures better tailored to conserve bryophytes in agricultural landscapes.• Update the European Red List every decade to ensure that the data remains current and relevant.• Develop Key Biodiversity Areas for bryophytes in Europe with a view to ensuring adequate site-based protection for bryophytes.Research and monitoring• Use the European Red List as a basis for future targeted fieldwork on possibly extinct and understudied species.• Establish a monitoring programme for targeted species (for example, threatened species and/or arable bryophytes).• Use the European Red List to obtain funding for research into the biology and ecology of key targeted species.Action on the ground• Use the European Red List as evidence to support multi-scale conservation initiatives, including designation of protected areas, reform of agricultural practices and land management, habitat restoration and rewilding, and pollution reduction measures.• Use the European Red List as a tool to target species that would benefit the most from the widespread implementation of the solutions offered by the 1991 Nitrates Directive (Council Directive 91/676/EEC), including the application of correct amounts of nutrients for each crop, only in periods of crop growth under suitable climatic conditions and never during periods of heavy rainfall or on frozen ground, and the creation of buffer zones to protect waters from run-off from the application of fertilizers.Ex situ conservation• Undertake ex situ conservation of species of conservation concern in botanic gardens and spore and gene banks, with a view to reintroduction where appropriate.</p

    Sphagnum alaskense (Sphagnaceae, Bryophyta), a new species for Russia

    No full text
    corecore