8 research outputs found

    spectral properties and photophysics of arylacetylenes in thin films

    Get PDF
    AbstractWe report the photobehaviour of a series of eight structurally related arylacetylene derivatives, in solution as well as in pristine and PC61BM blended thin-_lms. The formation of both H- and J-aggregates in the solid state have been demonstrated, and, interestingly, an energy transfer from H-aggregates or/and from residual "unstacked" molecules to J-aggregates has been found, the latter being the only emitting species. The fuorescence quenching by PC61BM at di_erent loadings has been studied in blend films, and it has been found particularly effcient in the case of a symmetrical peripheral substitution of the acetylene derivative core. Preliminary time-resolved measurements in emission (ns resolution) and in absorption (fs resolution) con_rmed the H⟶J energy transfer and underlined the presence of delayed fuorescence from Jaggregates, formed by energy transfer from the long-lived first excited singlet state of H-aggregates. In all cases, a homogeneous surface morphology of thin films

    Amplified Host Defense by Toll-Like Receptor-Mediated Downregulation of the Glucocorticoid-Induced Leucine Zipper (GILZ) in Macrophages

    Get PDF
    Activation of toll-like receptors (TLRs) plays a pivotal role in the host defense against bacteria and results in the activation of NF-κB-mediated transcription of proinflammatory mediators. Glucocorticoid-induced leucine zipper (GILZ) is an anti-inflammatory mediator, which inhibits NF-κB activity in macrophages. Thus, we aimed to investigate the regulation and role of GILZ expression in primary human and murine macrophages upon TLR activation. Treatment with TLR agonists, e.g., Pam3CSK4 (TLR1/2) or LPS (TLR4) rapidly decreased GILZ mRNA and protein levels. In consequence, GILZ downregulation led to enhanced induction of pro-inflammatory mediators, increased phagocytic activity, and a higher capacity to kill intracellular bacteria (Salmonella enterica serovar typhimurium), as shown in GILZ knockout macrophages. Treatment with the TLR3 ligand polyinosinic: polycytidylic acid [Poly(I:C)] did not affect GILZ mRNA levels, although GILZ protein expression was decreased. This effect was paralleled by sensitization toward TLR1/2- and TLR4-agonists. A bioinformatics approach implicated more than 250 miRNAs as potential GILZ regulators. Microarray analysis revealed that the expression of several potentially GILZ-targeting miRNAs was increased after Poly(I:C) treatment in primary human macrophages. We tested the ability of 11 of these miRNAs to target GILZ by luciferase reporter gene assays. Within this small set, four miRNAs (hsa-miR-34b*,−222,−320d,−484) were confirmed as GILZ regulators, suggesting that GILZ downregulation upon TLR3 activation is a consequence of the synergistic actions of multiple miRNAs. In summary, our data show that GILZ downregulation promotes macrophage activation. GILZ downregulation occurs both via MyD88-dependent and -independent mechanisms and can involve decreased mRNA or protein stability and an attenuated translation

    Mercury's low-reflectance material: Constraints from hollows

    Get PDF
    Unusually low reflectance material, within which depressions known as hollows appear to be actively forming by sublimation, is a major component of Mercury's surface geology. The observation that this material is exhumed from depth by large impacts has the intriguing implication that the planet's lower crust or upper mantle contains a significant volatile-rich, low-reflectance layer, the composition of which will be key for developing our understanding of Mercury's geochemical evolution and bulk composition. Hollows provide a means by which the composition of both the volatile and non-volatile components of the low-reflectance material (LRM) can be constrained, as they result from the loss of the volatile component, and any remaining lag can be expected to be formed of the non-volatile component. However, previous work has approached this by investigating the spectral character of hollows as a whole, including that of bright deposits surrounding the hollows, a unit of uncertain character. Here we use high-resolution multispectral images, obtained as the MESSENGER spacecraft approached Mercury at lower altitudes in the latter part of its mission, to investigate reflectance spectra of inactive hollow floors where sublimation appears to have ceased, and compare this to those of the bright surrounding products and the parent material. This analysis reveals that the final lag after hollow-formation has a flatter spectral slope than that of any other unit on the planet and reflectance approaching that of more space-weathered parent material. This indicates firstly that the volatile material lost has a steeper spectral slope and higher reflectance than the parent material, consistent with (Ca,Mg) sulfides, and secondly, that the low-reflectance component of LRM is non-volatile and may be graphite

    Photoinduced Formation of Bithiophene Radical Cation via a Hole-Transfer Process from CdS Nanocrystals

    No full text
    The exciton dynamics in semiconductor nanocrystals can be strongly affected by coupling the nanocrystals to organic ligands. A deeper understanding of the interactions in semiconductor–organic hybrid systems is important for the design of functional devices. In the present work, the interactions between CdS quantum dots and bithiophene molecules have been investigated. In particular, the photophysical behavior of CdS nanocrystals has been investigated in <i>n</i>-heptane in the presence of increasing bithiophene concentration by use of steady-state and time-resolved measurements. Bithiophene is a well-known electron donor (or hole acceptor), and it has a good affinity with CdS surface for the presence of sulfur atoms. The nanocrystal luminescence was efficiently quenched upon addition of increasing concentration of the thiophene derivative, and modifications in the emission decay profiles of CdS were observed; the analysis of luminescence data suggests that quenching is mainly due to static interaction able to modify the dynamics of the exciton states of the hybrid nanomaterials. The transient absorption measurements enable to detect the bithiophene radical cation upon CdS excitation, thus revealing the occurrence of an efficient hole transfer process from the nanocrystals to the organic ligand, for which a quantum efficiency of 36% has been measured. The dependence of transient signal on bithiophene concentration and the formation of tetrathiophene intermediates indicate that CdS exciton states are able to photosensitize the polymerization of bithiophene after the hole transfer processes. The data indicate that in the investigated system the decay of charged species is not determined by back-reactions

    Agrofoods for Sustainable Health Benefits and Their Economic Viability

    No full text
    The presence of beneficial phytochemicals in agrofoods has a deep impact on both quality and control, and increases their value in the global market. This chapter focuses on the chemical constituents present in agrofoods along with the marketable strategies to generate profitable business and provide health benefits to society. Therefore various diseases can be regulated or prevented not by consuming medicine but by choosing healthier food options. Food-related transnational corporations and mobilization of food with and within nations have played a great role in the globalization of agrofood. The chapter discusses the baseline information on phytochemicals, their effect on health and the market value of some commonly consumed fruits and vegetables. In developing countries, in addition to production and preservation, the phytochemical information for end users can add new avenues to market value of agricultural-based food
    corecore