7 research outputs found

    Toward a user-centered design of a weather forecasting decision-support tool

    Get PDF
    Hazard Services is a software toolkit that integrates information management, hazard alerting, and communication functions into a single user interface. When complete, National Weather Service forecasters across the United States will use Hazard Services for operational issuance of weather and hydrologic alerts, making the system an instrumental part of the threat management process. As a new decision-support tool, incorporating an understanding of user requirements and behavior is an important part of building a system that is usable, allowing users to perform work-related tasks efficiently and effectively. This paper discusses the Hazard Services system and findings from a usability evaluation with a sample of end users. Usability evaluations are frequently used to support software and website development and can provide feedback on a system’s efficiency of use, effectiveness, and learnability. In the present study, a user-testing evaluation assessed task performance in terms of error rates, error types, response time, and subjective feedback from a questionnaire. A series of design recommendations was developed based on the evaluation’s findings. The recommendations not only further the design of Hazard Services, but they may also inform the designs of other decision-support tools used in weather and hydrologic forecasting. Incorporating usability evaluation into the iterative design of decision-support tools, such as Hazard Services, can improve system efficiency, effectiveness, and user experience

    The FLASH project: improving the tools for flash flood monitoring and prediction across the United States

    Get PDF
    This study introduces the Flooded Locations and Simulated Hydrographs (FLASH) project. FLASH is the first system to generate a suite of hydrometeorological products at flash flood scale in real-time across the conterminous United States, including rainfall average recurrence intervals, ratios of rainfall to flash flood guidance, and distributed hydrologic model–based discharge forecasts. The key aspects of the system are 1) precipitation forcing from the National Severe Storms Laboratory (NSSL)’s Multi-Radar Multi-Sensor (MRMS) system, 2) a computationally efficient distributed hydrologic modeling framework with sufficient representation of physical processes for flood prediction, 3) capability to provide forecasts at all grid points covered by radars without the requirement of model calibration, and 4) an open-access development platform, product display, and verification system for testing new ideas in a real-time demonstration environment and for fostering collaborations. This study assesses the FLASH system’s ability to accurately simulate unit peak discharges over a 7-yr period in 1,643 unregulated gauged basins. The evaluation indicates that FLASH’s unit peak discharges had a linear and rank correlation of 0.64 and 0.79, respectively, and that the timing of the peak discharges has errors less than 2 h. The critical success index with FLASH was 0.38 for flood events that exceeded action stage. FLASH performance is demonstrated and evaluated for case studies, including the 2013 deadly flash flood case in Oklahoma City, Oklahoma, and the 2015 event in Houston, Texas—both of which occurred on Memorial Day weekends

    EF5: Version 1.0

    No full text
    Ensemble Framework For Flash Flood Forecastin

    A Unified Flash Flood Database over the US

    No full text
    International audienceDespite flash flooding being one of the most deadly and costly weather-related natural hazards worldwide, individual datasets to characterize them in the United States are hampered by limited documentation and can be difficult to access. This study is the first of its kind to assemble, reprocess, describe, and disseminate a georeferenced U.S. database providing a long-term, detailed characterization of flash flooding in terms of spatiotemporal behavior and specificity of impacts. The database is composed of three primary sources: 1) the entire archive of automated discharge observations from the U.S. Geological Survey that has been reprocessed to describe individual flooding events, 2) flash-flooding reports collected by the National Weather Service from 2006 to the present, and 3) witness reports obtained directly from the public in the Severe Hazards Analysis and Verification Experiment during the summers 2008–10. Each observational data source has limitations; a major asset of the unified flash flood database is its collation of relevant information from a variety of sources that is now readily available to the community in common formats. It is anticipated that this database will be used for many diverse purposes, such as evaluating tools to predict flash flooding, characterizing seasonal and regional trends, and improving understanding of dominant flood-producing processes. We envision the initiation of this community database effort will attract and encompass future datasets
    corecore