138 research outputs found

    The effect of meloxicam on pain sensitivity, rumination time, and clinical signs in dairy cows with endotoxin-induced clinical mastitis

    Get PDF
    AbstractThe objectives of this study were to (1) evaluate the use of a pressure algometer and an automated rumination monitoring system to assess changes in pain sensitivity and rumination time in response to endotoxin-induced clinical mastitis and (2) evaluate the effect of the nonsteroidal antiinflammatory drug meloxicam on pain sensitivity and rumination time, as well as other clinical signs, in dairy cattle with endotoxin-induced clinical mastitis. Clinical mastitis was induced in 12 primiparous and 12 multiparous lactating dairy cows by intramammary infusion of 25µg of Escherichia coli lipopolysaccharide (LPS) into 1 uninfected quarter. Immediately after, half the cows were injected subcutaneously with meloxicam (treated group) and half with the same volume of a placebo solution (control group). Pain sensitivity was assessed by measuring the difference in pressure required to elicit a response on the control and challenged quarter using an algometer 3 d before, immediately before, and at 3, 6, 12, and 24h after LPS infusion and either meloxicam or placebo injection. Rumination was continuously monitored from 2 d before to 3 d after LPS infusion using rumination loggers. Udder edema, body temperature, somatic cell score, and dry matter intake were also monitored to evaluate the occurrence and the duration of the inflammation after LPS infusion. In control animals, the difference in the pressure applied to the control and challenged quarters (control − challenged quarter) increased by 1.1±0.4kg of force 6h after LPS infusion compared with the baseline, suggesting an increase in pain sensitivity in the challenged quarter. Neither the LPS infusion nor the meloxicam treatment had an effect on daily rumination time. However, the rumination diurnal pattern on the day of LPS infusion showed an overall deviation from the baseline pattern. Cows spent less time ruminating in the hours following LPS infusion and more time ruminating later in the day. Meloxicam did not alter somatic cell score or dry matter intake. However, meloxicam-treated animals had less udder edema and a lower body temperature in the hours following LPS infusion compared with control animals. In conclusion, pressure algometers and rumination loggers show promise as tools to detect mastitis and monitor recovery on farm. Further, meloxicam has a beneficial effect in relieving pain and decreasing udder edema and body temperature in LPS-induced clinical mastitis

    Artificial coiled coil biomineralisation protein for the synthesis of magnetic nanoparticles

    Get PDF
    Green synthesis of precise inorganic nanomaterials is a major challenge. Magnetotactic bacteria biomineralise magnetite nanoparticles (MNPs) within membrane vesicles (magnetosomes), which are embedded with dedicated proteins that control nanocrystal formation. Some such proteins are used in vitro to control MNP formation in green synthesis; however, these membrane proteins self-aggregate, making their production and use in vitro challenging and difficult to scale. Here, we provide an alternative solution by displaying active loops from biomineralisation proteins Mms13 and MmsF on stem-loop coiled-coil scaffold proteins (Mms13cc/MmsFcc). These artificial biomineralisation proteins form soluble, stable alpha-helical hairpin monomers, and MmsFcc successfully controls the formation of MNP when added to magnetite synthesis, regulating synthesis comparably to native MmsF. This study demonstrates how displaying active loops from membrane proteins on coiled-coil scaffolds removes membrane protein solubility issues, while retains activity, enabling a generic approach to readily-expressible, versatile, artificial membrane proteins for more accessible study and exploitation

    Exposure Path Perceptions and Protective Actions in Biological Water Contamination Emergencies

    Get PDF
    This study extends the Protective Action Decision Model, developed to address disaster warning responses in the context of natural hazards, to “boil water” advisories. The study examined 110 Boston residents’ and 203 Texas students’ expectations of getting sick through different exposure paths for contact with contaminated water. In addition, the study assessed respondents’ actual implementation (for residents) or behavioral expectations (for students) of three different protective actions – bottled water, boiled water, and personally chlorinated water – as well as their demo-graphic characteristics and previous experience with water contamination. The results indicate that people distinguish among the exposure paths, but the differences are small (one-third to one-half of the response scale). Nonetheless, the perceived risk from the exposure paths helps to explain why people are expected to consume (or actually consumed) bottled water rather than boiled or personally chlorinated water. Overall, these results indicate that local authorities should take care to communicate the relative risks of different exposure paths and should expect that people will respond to a boil water order primarily by consuming bottled water. Thus, they should make special efforts to increase supplies of bottled water in their communities during water contamination emergencies

    Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm

    Full text link
    The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to <100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews and as hard cover in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Disentangling the response of fishes to recreational fishing over 30 years within a fringing coral reef reserve network

    Get PDF
    Few studies assess the effects of recreational fishing in isolation from commercial fishing. We used meta-analysis to synthesise 4444 samples from 30 years (1987–2017) of fish surveys inside and outside a large network of highly protected reserves in the Ningaloo Marine Park, Western Australia, where the major fishing activity is recreational. Data were collected by different agencies, using varied survey designs and sampling methods. We contrasted the relative abundance and biomass of target and non-target fish groups between fished and reserve locations. We considered the influence of, and possible interactions between, seven additional variables: age and size of reserve, one of two reserve network configurations, reef habitat type, recreational fishing activity, shore-based fishing regulations and survey method. Taxa responded differently: the abundance and biomass inside reserves relative to outside was higher for targeted lethrinids, while other targeted (and non-targeted) fish groups were indistinguishable. Reef habitat was important for explaining lethrinid response to protection, and this factor interacted with reserve size, such that larger reserves were demonstrably more effective in the back reef and lagoon habitats. There was little evidence of changes in relative abundance and biomass of fishes with reserve age, or after rezoning and expansion of the reserve network. Our study demonstrates the complexities in quantifying fishing effects, highlighting some of the key factors and interactions that likely underlie the varied results in reserve assessments that should be considered in future reserve design and assessment

    Pion contamination in the MICE muon beam

    Get PDF
    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than \sim1\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ<1.4%f_\pi < 1.4\% at 90\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.Department of Energy and National Science Foundation (U.S.A.), the Instituto Nazionale di Fisica Nucleare (Italy), the Science and Technology Facilities Council (U.K.), the European Community under the European Commission Framework Programme 7 (AIDA project, grant agreement no. 262025, TIARA project, grant agreement no. 261905, and EuCARD), the Japan Society for the Promotion of Science and the Swiss National Science Foundation, in the framework of the SCOPES programme

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore