276 research outputs found

    A comparative review of thermocouple and infrared radiation temperature measurement methods during the machining of metals

    Get PDF
    During the machining process, substantial thermal loads are generated due to tribological factors and plastic deformation. The increase in temperature during the cutting process can lead to accelerated tool wear, reducing the tool’s lifespan; the degradation of machining accuracy in the form of dimensional inaccuracies; and thermally induced defects affecting the metallurgical properties of the machined component. These effects can lead to a significant increase in operational costs and waste which deviate from the sustainability goals of Industry 4.0. Temperature is an important machining response; however, it is one of the most difficult factors to monitor, especially in high-speed machining applications such as drilling and milling, because of the high rotational speeds of the cutting tool and the aggressive machining environments. In this article, thermocouple and infrared radiation temperature measurement methods used by researchers to monitor temperature during turning, drilling and milling operations are reviewed. The major merits and limitations of each temperature measurement methodology are discussed and evaluated. Thermocouples offer a relatively inexpensive solution; however, they are prone to calibration drifts and their response times are insufficient to capture rapid temperature changes in high-speed operations. Fibre optic infrared thermometers have very fast response times; however, they can be relatively expensive and require a more robust implementation. It was found that no one temperature measurement methodology is ideal for all machining operations. The most suitable temperature measurement method can be selected by individual researchers based upon their experimental requirements using critical criteria, which include the expected temperature range, the sensor sensitivity to noise, responsiveness and cost

    Comparison between dispersed nuclear power plants and a nuclear energy center at a hypothetical site on Kentucky Lake, Tennessee

    Full text link
    The thermal, ecological, and social impacts of a 40-reactor NEC are compared to impacts from four 10-reactor NECs and ten 4-reactor power plants. The comparison was made for surrogate sites in western Tennessee. The surrogate site for the 40-reactor NEC is located on Kentucky Lake. A layout is postulated for ten clusters of four reactors each with 2.5-mile spacing between clusters. The plants use natural-draft cooling towers. A transmission system is proposed for delivering the power (48,000 MW) to five load centers. Comparable transmission systems are proposed for the 10-reactor NECs and the 4-reactor dispersed sites delivering power to the same load centers. (auth

    Application of Global Positioning System and questionnaires data for the study of driver behavior on two-lane rural roads

    Full text link
    This paper is a preprint of a paper accepted by IET Intelligent Transport Systems and is subject to Institution of Engineering and Technology Copyright. When the final version is published, the copy of record will be available at IET Digital LibraryMethodologies based on naturalistic observation provide the most accurate data for studying drivers' behaviour. This study presents a new methodology to obtain naturalistic data related to drivers' behaviour in a road segment. It is based on the combination of using global positioning system data and drivers' questionnaires. The continuous speed profiles along a road segment and the characteristics of drivers, of their trips and the type of their vehicles can be obtained for a great amount of drivers. It has already been successfully used for several studies, such as the development of models to estimate operating speed profile in two-lane rural road segments; or the characterisation of driving styles. These operating speed models have been the key for the development of a new geometric design consistency model, allowing an easier road safety evaluation. Besides, knowledge on the human factors that influence speed choice may be useful for road safety media campaigns and education programs designers, and also for the improvement of intelligent driver assistance systems.The authors thank 'Centre for Studies and Experimentation of Public Works (CEDEX)' of the 'Spanish Ministry of Public Works' that partially subsidizes the research. We also wish to thank to the 'General Directorate of Public Works, Urban Projects and Housing' of the 'Infrastructure, Territory and Environment Department' of the 'Valencian Government', to the 'Valencian Provincial Council' and to the 'General Directorate of Traffic' of the 'Ministry of the Interior' for their cooperation in field data gathering.PĂ©rez Zuriaga, AM.; Camacho Torregrosa, FJ.; Campoy Ungria, JM.; GarcĂ­a GarcĂ­a, A. (2013). Application of Global Positioning System and questionnaires data for the study of driver behavior on two-lane rural roads. IET Intelligent Transport Systems. 7(2):182-189. doi:10.1049/iet-its.2012.0151S18218972Fourie, M., Walton, D., & Thomas, J. A. (2011). Naturalistic observation of drivers’ hands, speed and headway. Transportation Research Part F: Traffic Psychology and Behaviour, 14(5), 413-421. doi:10.1016/j.trf.2011.04.009Gibreel, G. M., Easa, S. M., & El-Dimeery, I. A. (2001). Prediction of Operating Speed on Three-Dimensional Highway Alignments. Journal of Transportation Engineering, 127(1), 21-30. doi:10.1061/(asce)0733-947x(2001)127:1(21)Fitzpatrick, K., & Collins, J. M. (2000). Speed-Profile Model for Two-Lane Rural Highways. Transportation Research Record: Journal of the Transportation Research Board, 1737(1), 42-49. doi:10.3141/1737-06Bella, F. (2008). Driving simulator for speed research on two-lane rural roads. Accident Analysis & Prevention, 40(3), 1078-1087. doi:10.1016/j.aap.2007.10.015Van Nes, N., Houtenbos, M., & Van Schagen, I. (2008). Improving speed behaviour: the potential of in-car speed assistance and speed limit credibility. IET Intelligent Transport Systems, 2(4), 323. doi:10.1049/iet-its:20080036Warner, H. W., & Åberg, L. (2006). Drivers’ decision to speed: A study inspired by the theory of planned behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 9(6), 427-433. doi:10.1016/j.trf.2006.03.004Goldenbeld, C., & van Schagen, I. (2007). The credibility of speed limits on 80km/h rural roads: The effects of road and person(ality) characteristics. Accident Analysis & Prevention, 39(6), 1121-1130. doi:10.1016/j.aap.2007.02.012Zuriaga, A. M. P., GarcĂ­a, A. G., Torregrosa, F. J. C., & D’Attoma, P. (2010). Modeling Operating Speed and Deceleration on Two-Lane Rural Roads with Global Positioning System Data. Transportation Research Record: Journal of the Transportation Research Board, 2171(1), 11-20. doi:10.3141/2171-02Ottesen, J. L., & Krammes, R. A. (2000). Speed-Profile Model for a Design-Consistency Evaluation Procedure in the United States. Transportation Research Record: Journal of the Transportation Research Board, 1701(1), 76-85. doi:10.3141/1701-10Park, P. Y., Miranda-Moreno, L. F., & Saccomanno, F. F. (2010). Estimation of speed differentials on rural highways using hierarchical linear regression models. Canadian Journal of Civil Engineering, 37(4), 624-637. doi:10.1139/l10-002Wasielewski, P. (1984). Speed as a measure of driver risk: Observed speeds versus driver and vehicle characteristics. Accident Analysis & Prevention, 16(2), 89-103. doi:10.1016/0001-4575(84)90034-4Williams, A. F., Kyrychenko, S. Y., & Retting, R. A. (2006). Characteristics of speeders. Journal of Safety Research, 37(3), 227-232. doi:10.1016/j.jsr.2006.04.001Lajunen, T., Karola, J., & Summala, H. (1997). Speed and Acceleration as Measures of Driving Style in Young Male Drivers. Perceptual and Motor Skills, 85(1), 3-16. doi:10.2466/pms.1997.85.1.3Af WĂ„hlberg, A. E. (2006). Speed choice versus celeration behavior as traffic accident predictor. Journal of Safety Research, 37(1), 43-51. doi:10.1016/j.jsr.2005.10.01

    Modelling of an imaging beamline at the ISIS pulsed neutron source

    Get PDF
    A combined neutron imaging and neutron diffraction facility, IMAT, is currently being built at the pulsed neutron spallation source ISIS in the U.K. A supermirror neutron guide is required to combine imaging and diffraction modes at the sample position in order to obtain suitable time of flight resolutions for energy selective imaging and diffraction experiments. IMAT will make use of a straight neutron guide and we consider here the optimization of the supermirror guide dimensions and characterisation of the resulting beam characteristics, including the homogeneity of the flux distribution in space and energy and the average and peak neutron fluxes. These investigations take into account some main design criteria: to maximise the neutron flux, to minimise geometrical artefacts in the open beam image at the sample position and to obtain a good energy resolution whilst retaining a large neutron bandwidth. All of these are desirable beam characteristics for the proposed imaging and diffraction analysis modes of IMAT

    Abaloparatide-SC improves trabecular microarchitecture as assessed by trabecular bone score (TBS): a 24-week randomized clinical trial.

    Get PDF
    In a phase 2 trial of 222 postmenopausal women with osteoporosis aged 55 to 85 years randomized to one of three different doses of abaloparatide-SC, subcutaneous teriparatide, or placebo for 24 weeks, abaloparatide-SC resulted in improvements in skeletal microarchitecture as measured by the trabecular bone score. Subcutaneous abaloparatide (abaloparatide-SC) increases total hip and lumbar spine bone mineral density and reduces vertebral and non-vertebral fractures. In this study, we analyzed the extent to which abaloparatide-SC improves skeletal microarchitecture, assessed indirectly by trabecular bone score (TBS). This is a post hoc analysis of a phase 2 trial of 222 postmenopausal women with osteoporosis aged 55 to 85 years randomized to abaloparatide-SC (20, 40, or 80 Όg), subcutaneous teriparatide (20 Όg), or placebo for 24 weeks. TBS was measured from lumbar spine dual X-ray absorptiometry (DXA) images in 138 women for whom the DXA device was TBS software compatible. Assessments were made at baseline, 12 and 24 weeks. Between-group differences were assessed by generalized estimating equations adjusted for relevant baseline characteristics, and a pre-determined least significant change analysis was performed. After 24 weeks, TBS increased significantly by 2.27, 3.14, and 4.21% versus baseline in participants on 20, 40, and 80 Όg abaloparatide-SC daily, respectively, and by 2.21% in those on teriparatide (p < 0.05 for each). The TBS in the placebo group declined by 1.08%. The TBS increase in each treatment group was significantly higher than placebo at 24 weeks (p < 0.0001 for each) after adjustment for age, BMI, and baseline TBS. A dose-response was observed at 24 weeks across the three doses of abaloparatide-SC and placebo (p = 0.02). The increase in TBS in the abaloparatide-SC 80 Όg group was significantly greater than TPTD (p < 0.03). These results are consistent with an effect of abaloparatide-SC to improve lumbar spine skeletal microarchitecture, as assessed by TBS

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Pion contamination in the MICE muon beam

    Get PDF
    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ∌\sim1\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ<1.4%f_\pi < 1.4\% at 90\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.Department of Energy and National Science Foundation (U.S.A.), the Instituto Nazionale di Fisica Nucleare (Italy), the Science and Technology Facilities Council (U.K.), the European Community under the European Commission Framework Programme 7 (AIDA project, grant agreement no. 262025, TIARA project, grant agreement no. 261905, and EuCARD), the Japan Society for the Promotion of Science and the Swiss National Science Foundation, in the framework of the SCOPES programme
    • 

    corecore