671 research outputs found

    Variation in the Diagnosis and Management of Appendicitis at Canadian Pediatric Hospitals

    Get PDF
    Objectives The objective was to characterize the variations in practice in the diagnosis and management of children admitted to hospitals from Canadian pediatric emergency departments (EDs) with suspected appendicitis, specifically the timing of surgical intervention, ED investigations, and management strategies. Methods Twelve sites participated in this retrospective health record review. Children aged 3 to 17 years admitted to the hospital with suspected appendicitis were eligible. Site-specific demographics, investigations, and interventions performed were recorded and compared. Factors associated with after-hours surgery were determined using generalized estimating equations logistic regression. Results Of the 619 children meeting eligibility criteria, surgical intervention was performed in 547 (88%). After-hours surgery occurred in 76 of the 547 children, with significant variation across sites (13.9%, 95% confidence interval = 7.1% to 21.6%, p \u3c 0.001). The overall perforation rate was 17.4% (95 of 547), and the negative appendectomy rate was 6.8% (37 of 547), varying across sites (p = 0.004 and p = 0.036, respectively). Use of inflammatory markers (p \u3c 0.001), blood cultures (p \u3c 0.001), ultrasound (p = 0.001), and computed tomography (p = 0.001) also varied by site. ED administration of narcotic analgesia and antibiotics varied across sites (p \u3c 0.001 and p = 0.001, respectively), as did the type of surgical approach (p \u3c 0.001). After-hours triage had a significant inverse association with after-hours surgery (p = 0.014). Conclusions Across Canadian pediatric EDs, there exists significant variation in the diagnosis and management of children with suspected appendicitis. These results indicate that the best diagnostic and management strategies remain unclear and support the need for future prospective, multicenter studies to identify strategies associated with optimal patient outcomes

    Political economy of renewable resource federalism

    Get PDF
    Author Posting. © Ecological Society of America, 2021. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 00 (2021): e2276, doi:10.1002/eap.2276.The authority to manage natural capital often follows political boundaries rather than ecological. This mismatch can lead to unsustainable outcomes, as spillovers from one management area to the next may create adverse incentives for local decision making, even within a single country. At the same time, one‐size‐fits‐all approaches of federal (centralized) authority can fail to respond to state (decentralized) heterogeneity and can result in inefficient economic or detrimental ecological outcomes. Here we utilize a spatially explicit coupled natural–human system model of a fishery to illuminate trade‐offs posed by the choice between federal vs. state control of renewable resources. We solve for the dynamics of fishing effort and fish stocks that result from different approaches to federal management that vary in terms of flexibility. Adapting numerical methods from engineering, we also solve for the open‐loop Nash equilibrium characterizing state management outcomes, where each state anticipates and responds to the choices of the others. We consider traditional federalism questions (state vs. federal management) as well as more contemporary questions about the economic and ecological impacts of shifting regulatory authority from one level to another. The key mechanisms behind the trade‐offs include whether differences in local conditions are driven by biological or economic mechanisms; degree of flexibility embedded in the federal management; the spatial and temporal distribution of economic returns across states; and the status‐quo management type. While simple rules‐of‐thumb are elusive, our analysis reveals the complex political economy dimensions of renewable resource federalism.This work was partially supported through the Ecological Federalism working group of the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation through NSF Award (No. DBI‐1300426), with additional support from the Howard H. Baker Jr. Center for Public Policy and The University of Tennessee, Knoxville. M. G. Neubert acknowledges support from the U.S. National Science Foundation (DEB‐1558904) and from the J. Seward Johnson Endowment in support of the Woods Hole Oceanographic Institution’s Marine Policy Center. We would like to thank seminar participants at Oregon State University, Nature Policy Lab at U.C. Davis, and the 2019 Association of Environmental and Resource Economists Summer Conference for valuable comments and suggestions on earlier versions of this research

    Protecting Human and Animal Health: The Road from Animal Models to New Approach Methods

    Get PDF
    Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made

    Lessons from Toxicology: Developing a 21st‑Century Paradigm for Medical Research

    Get PDF
    Biomedical developments in the 21st century provide an unprecedented opportunity to gain a dynamic systems-level and human-specific understanding of the causes and pathophysiologies of disease. This understanding is a vital need, in view of continuing failures in health research, drug discovery, and clinical translation. The full potential of advanced approaches may not be achieved within a 20th-century conceptual framework dominated by animal models. Novel technologies are being integrated into environmental health research and are also applicable to disease research, but these advances need a new medical research and drug discovery paradigm to gain maximal benefits. We suggest a new conceptual framework that repurposes the 21st-century transition underway in toxicology. Human disease should be conceived as resulting from integrated extrinsic and intrinsic causes, with research focused on modern human-specific models to understand disease pathways at multiple biological levels that are analogous to adverse outcome pathways in toxicology. Systems biology tools should be used to integrate and interpret data about disease causation and pathophysiology. Such an approach promises progress in overcoming the current roadblocks to understanding human disease and successful drug discovery and translation. A discourse should begin now to identify and consider the many challenges and questions that need to be solved

    Evidence-based Toxicology for the 21st Century: Opportunities and Challenges

    Get PDF
    The Evidence-based Toxicology Collaboration (EBTC) was established recently to translate evidence-based approaches from medicine and health care to toxicology in an organized and sustained effort. The EBTC held a workshop on “Evidence-based Toxicology for the 21st Century: Opportunities and Challenges” in Research Triangle Park, North Carolina, USA on January 24-25, 2012. The presentations largely reflected two EBTC priorities: to apply evidence-based methods to assessing the performance of emerging pathwaybased testing methods consistent with the 2007 National Research Council report on “Toxicity Testing in the 21st Century” as well as to adopt a governance structure and work processes to move that effort forward. The workshop served to clarify evidence-based approaches and to provide food for thought on substantive and administrative activities for the EBTC. Priority activities include conducting pilot studies to demonstrate the value of evidence-based approaches to toxicology, as well as conducting educational outreach on these approaches

    Evidence-based Toxicology for the 21st Century: Opportunities and Challenges

    Get PDF
    The Evidence-based Toxicology Collaboration (EBTC) was established recently to translate evidence-based approaches from medicine and health care to toxicology in an organized and sustained effort. The EBTC held a workshop on “Evidence-based Toxicology for the 21st Century: Opportunities and Challenges” in Research Triangle Park, North Carolina, USA on January 24-25, 2012. The presentations largely reflected two EBTC priorities: to apply evidence-based methods to assessing the performance of emerging pathwaybased testing methods consistent with the 2007 National Research Council report on “Toxicity Testing in the 21st Century” as well as to adopt a governance structure and work processes to move that effort forward. The workshop served to clarify evidence-based approaches and to provide food for thought on substantive and administrative activities for the EBTC. Priority activities include conducting pilot studies to demonstrate the value of evidence-based approaches to toxicology, as well as conducting educational outreach on these approaches

    The Arctic in the twenty-first century: changing biogeochemical linkages across a paraglacial landscape of Greenland

    Get PDF
    The Kangerlussuaq area of southwest Greenland encompasses diverse ecological, geomorphic, and climate gradients that function over a range of spatial and temporal scales. Ecosystems range from the microbial communities on the ice sheet and moisture-stressed terrestrial vegetation (and their associated herbivores) to freshwater and oligosaline lakes. These ecosystems are linked by a dynamic glacio-fluvial-aeolian geomorphic system that transports water, geological material, organic carbon and nutrients from the glacier surface to adjacent terrestrial and aquatic systems. This paraglacial system is now subject to substantial change because of rapid regional warming since 2000. Here, we describe changes in the eco- and geomorphic systems at a range of timescales and explore rapid future change in the links that integrate these systems. We highlight the importance of cross-system subsidies at the landscape scale and, importantly, how these might change in the near future as the Arctic is expected to continue to warm

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    • 

    corecore