395 research outputs found

    What makes a mobile app successful in supporting health behaviour change?

    Get PDF
    YesIntroduction: Health promotion apps designed to support and reinforce health behaviours or to reduce risk behaviours are the most commonly downloaded apps. Such technologies have the potential to reach and deliver health care to new populations. But the extent to which they are successful in enabling the adoption of new and desired behaviours can vary. Some apps are more effective than others, some are free to download while others require a nominal or substantial charge. Cost alone is not indicative of quality or effectiveness. This is important because the use of health apps by the public will likely increase, as is the expectation that health care professionals understand this technology and its heuristic role in personalised health. Practitioners therefore need to be better informed regarding what makes a health app appealing to service users and successful as an intervention to facilitate behaviour change. Objective: This paper describes and discusses how the structure and content of health care apps can facilitate or inhibit behavioural change. The aim is to support practitioners in the screening and identification of suitable apps for clinical use. Method: Theory and literature review. Conclusion: App content that involved clinician input at the design stage and included internal drivers such as motivation, self-efficacy and illness understanding and external drivers such as illness information, social networking and user compatibility tend to do better in facilitating behaviour change than those that do not. Of these factors, motivation is considered to be the most important

    Optimal traffic organisation in ants under crowded conditions

    Full text link
    Efficient transportation, a hot topic in nonlinear science, is essential for modern societies and the survival of biological species. Biological evolution has generated a rich variety of successful solutions, which have inspired engineers to design optimized artificial systems. Foraging ants, for example, form attractive trails that support the exploitation of initially unknown food sources in almost the minimum possible time. However, can this strategy cope with bottleneck situations, when interactions cause delays that reduce the overall flow? Here, we present an experimental study of ants confronted with two alternative routes. We find that pheromone-based attraction generates one trail at low densities, whereas at a high level of crowding, another trail is established before traffic volume is affected, which guarantees that an optimal rate of food return is maintained. This bifurcation phenomenon is explained by a nonlinear modelling approach. Surprisingly, the underlying mechanism is based on inhibitory interactions. It implies capacity reserves, a limitation of the density-induced speed reduction, and a sufficient pheromone concentration for reliable trail perception. The balancing mechanism between cohesive and dispersive forces appears to be generic in natural, urban and transportation systems.Comment: For related work see http://www.helbing.or

    Mobilization of genomic islands of Staphylococcus aureus by temperate bacteriophage

    Get PDF
    The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaβ, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaβ by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells

    Get PDF
    Neuroblastoma (NB), a sympathetically derived childhood tumour, shows characteristics of neuronal precursor cells, suggesting a halted differentiation process. We have previously shown that the Notch signalling cascade, a key player during normal neurogenesis, also might be involved in NB differentiation. Valproic acid (VPA), a well-tolerated antiepileptic drug, has been shown to induce differentiation and cell death of NB cells, possibly associated with its recently described HDAC inhibiting activity. Stimulation of NB cells with VPA led to increased cell death and phenotypic changes associated with differentiation, that is, neurite extension and upregulation of neuronal markers. VPA treatment also led to an activated Notch signalling cascade as shown by increased levels of intracellular Notch-1 and Hes-1, mimicking the initial phase of induced differentiation. These results reinforce that VPA potentially could be used in differentiation therapy of NB and that the effects in part could be a consequence of interference with the Notch signalling cascade

    Embedding physical activity in the heart of the NHS: the need for a whole-system approach

    Get PDF
    Solutions to the global challenge of physical inactivity have tended to focus on interventions at an individual level, when evidence shows that wider factors, including the social and physical environment, play a major part in influencing health-related behaviour. A multidisciplinary perspective is needed to rewrite the research agenda on physical activity if population-level public health benefits are to be demonstrated. This article explores the questions that this raises regarding the particular role that the UK National Health Service (NHS) plays in the system. The National Centre for Sport and Exercise Medicine in Sheffield is put forward as a case study to discuss some of the ways in which health systems can work in collaboration with other partners to develop environments and systems that promote active lives for patients and staff

    Nox4 Mediates Renal Cell Carcinoma Cell Invasion through Hypoxia-Induced Interleukin 6- and 8- Production

    Get PDF
    Inflammatory cytokines are detected in the plasma of patients with renal cell carcinoma (RCC) and are associated with poor prognosis. However, the primary cell type involved in producing inflammatory cytokines and the biological significance in RCC remain unknown. Inflammation is associated with oxidative stress, upregulation of hypoxia inducible factor 1-alpha, and production of pro-inflammatory gene products. Solid tumors are often heterogeneous in oxygen tension together suggesting that hypoxia may play a role in inflammatory processes in RCC. Epithelial cells have been implicated in cytokine release, although the stimuli to release and molecular mechanisms by which they are released remain unclear. AMP-activated protein kinase (AMPK) is a highly conserved sensor of cellular energy status and a role for AMPK in the regulation of cell inflammatory processes has recently been demonstrated.We have identified for the first time that interleukin-6 and interleukin-8 (IL-6 and IL-8) are secreted solely from RCC cells exposed to hypoxia. Furthermore, we demonstrate that the NADPH oxidase isoform, Nox4, play a key role in hypoxia-induced IL-6 and IL-8 production in RCC. Finally, we have characterized that enhanced levels of IL-6 and IL-8 result in RCC cell invasion and that activation of AMPK reduces Nox4 expression, IL-6 and IL-8 production, and RCC cell invasion.Together, our data identify novel mechanisms by which AMPK and Nox4 may be linked to inflammation-induced RCC metastasis and that pharmacological activation of AMPK and/or antioxidants targeting Nox4 may represent a relevant therapeutic intervention to reduce IL-6- and IL-8-induced inflammation and cell invasion in RCC

    Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies have focused on the implication of the serotonin and dopamine systems in neuroadaptive responses to the recreational drug 3,4-methylenedioxy-metamphetamine (MDMA). Less attention has been given to the major excitatory neurotransmitter glutamate known to be implicated in schizophrenia and drug addiction. The aim of the present study was to investigate the effect of repeated intermittent MDMA administration upon gene-transcript expression of the glutamate transporters (EAAT1, EAAT2-1, EAAT2-2), the glutamate receptor subunits of AMPA (GluR1, GluR2, GluR3), the glutamate receptor subunits of NMDA (NR1, NR2A and NR2B), as well as metabotropic glutamate receptors (mGluR1, mGluR2, mGluR3, mGluR5) in six different brain regions. Adolescent male Sprague Dawley rats received MDMA at the doses of 3 × 1 and 3 × 5 mg/kg/day, or 3× vehicle 3 hours apart, every 7<sup>th </sup>day for 4 weeks. The gene-transcript levels were assessed using real-time PCR validated with a range of housekeeping genes.</p> <p>Results</p> <p>The findings showed pronounced enhancements in gene-transcript expression of GluR2, mGluR1, mGluR5, NR1, NR2A, NR2B, EAAT1, and EAAT2-2 in the cortex at bregma +1.6. In the caudate putamen, mRNA levels of GluR3, NR2A, and NR2B receptor subunits were significantly increased. In contrast, the gene-transcript expression of GluR1 was reduced in the hippocampus. In the hypothalamus, there was a significant increase of GluR1, GluR3, mGluR1, and mGluR3 gene-transcript expressions.</p> <p>Conclusion</p> <p>Repeated intermittent MDMA administration induces neuroadaptive changes in gene-transcript expressions of glutamatergic NMDA and AMPA receptor subunits, metabotropic receptors and transporters in regions of the brain regulating reward-related associative learning, cognition, and memory and neuro-endocrine functions.</p

    Tissue inhibitor of metalloproteinases-1 protects human neurons from staurosporine and HIV-1-induced apoptosis: mechanisms and relevance to HIV-1-associated dementia

    Get PDF
    HIV-1-associated dementia (HAD)-relevant proinflammatory cytokines robustly induce astrocyte tissue inhibitor of metalloproteinases-1 (TIMP-1). As TIMP-1 displays pleotropic functions, we hypothesized that TIMP-1 expression may serve as a neuroprotective response of astrocytes. Previously, we reported that chronically activated astrocytes fail to maintain elevated TIMP-1 expression, and TIMP-1 levels are lower in the brain of HAD patients; a phenomenon that may contribute to central nervous system pathogenesis. Further, the role of TIMP-1 as a neurotrophic factor is incompletely understood. In this study, we report that staurosporine (STS) and HIV-1ADA virus, both led to induction of apoptosis in cultured primary human neurons. Interestingly, cotreatment with TIMP-1 protects neurons from apoptosis and reverses neuronal morphological changes induced by these toxins. Further, the anti-apoptotic effect was not observed with TIMP-2 or -3, but was retained in a mutant of the N-terminal TIMP-1 protein with threonine-2 mutated to glycine (T2G) that is deficient in matrix metalloproteinase (MMP)-1, -2 and -3 inhibitory activity. Therefore, the mechanism is specific to TIMP-1 and partially independent of MMP-inhibition. Additionally, TIMP-1 modulates the Bcl-2 family of proteins and inhibits opening of mitochondrial permeability transition pores induced by HIV-1 or STS. Together, these findings describe a novel function, mechanism and direct role of TIMP-1 in neuroprotection, suggesting its therapeutic potential in HAD and possibly in other neurodegenerative diseases

    Plasma CCN2/connective tissue growth factor is associated with right ventricular dysfunction in patients with neuroendocrine tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carcinoid heart disease, a known complication of neuroendocrine tumors, is characterized by right heart fibrotic lesions. Carcinoid heart disease has traditionally been defined by the degree of valvular involvement. Right ventricular (RV) dysfunction due to mural involvement may also be a manifestation. Connective tissue growth factor (CCN2) is elevated in many fibrotic disorders. Its role in carcinoid heart disease is unknown. We sought to investigate the relationship between plasma CCN2 and valvular and mural involvement in carcinoid heart disease.</p> <p>Methods</p> <p>Echocardiography was performed in 69 patients with neuroendocrine tumors. RV function was assessed using tissue Doppler analysis of myocardial systolic strain. Plasma CCN2 was analyzed using an enzyme-linked immunosorbent assay. Mann-Whitney U, Kruskal-Wallis, Chi-squared and Fisher's exact tests were used to compare groups where appropriate. Linear regression was used to evaluate correlation.</p> <p>Results</p> <p>Mean strain was -21% ± 5. Thirty-three patients had reduced RV function (strain > -20%, mean -16% ± 3). Of these, 8 had no or minimal tricuspid and/or pulmonary regurgitation (TR/PR). Thirty-six patients had normal or mildly reduced RV function (strain ≤ -20%, mean -25% ± 3). There was a significant inverse correlation between RV function and plasma CCN2 levels (r = 0.47, p < 0.001). Patients with reduced RV function had higher plasma CCN2 levels than those with normal or mildly reduced RV function (p < 0.001). Plasma CCN2 ≥ 77 μg/L was an independent predictor of reduced RV function (odds ratio 15.36 [95% CI 4.15;56.86]) and had 88% sensitivity and 69% specificity for its detection (p < 0.001). Plasma CCN2 was elevated in patients with mild or greater TR/PR compared to those with no or minimal TR/PR (p = 0.008), with the highest levels seen in moderate to severe TR/PR (p = 0.03).</p> <p>Conclusions</p> <p>Elevated plasma CCN2 levels are associated with RV dysfunction and valvular regurgitation in NET patients. CCN2 may play a role in neuroendocrine tumor-related cardiac fibrosis and may serve as a marker of its earliest stages.</p
    corecore