257 research outputs found

    Fusion product losses due to fishbone instabilities in deuterium JET plasmas

    Get PDF
    During development of a high-performance hybrid scenario for future deuterium–tritium experiments on the Joint European Torus, an increased level of fast ion losses in the MeV energy range was observed during the instability of high-frequency n  =  1 fishbones. The fishbones are excited during deuterium neutral beam injection combined with ion cyclotron heating. The frequency range of the fishbones, 10–25 kHz, indicates that they are driven by a resonant interaction with the NBI-produced deuterium beam ions in the energy range  ≤120 keV. The fast particle losses in a much higher energy range are measured with a fast ion loss detector, and the data show an expulsion of deuterium plasma fusion products, 1 MeV tritons and 3 MeV protons, during the fishbone bursts. An MHD mode analysis with the MISHKA code combined with the nonlinear wave-particle interaction code HAGIS shows that the loss of toroidal symmetry caused by the n  =  1 fishbones affects strongly the confinement of non-resonant high energy fusion-born tritons and protons by perturbing their orbits and expelling them. This modelling is in a good agreement with the experimental data.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053 and from the RCUK Energy Programme [grant No EP/P012450/1]. To obtain further information on the data and models underlying this paper please contact [email protected] . The views and opinions expressed herein do not necessarily reflect those of the European CommissionPeer ReviewedPostprint (author's final draft

    The Uncertainty in Newton's Constant and Precision Predictions of the Primordial Helium Abundance

    Full text link
    The current uncertainty in Newton's constant, G_N, is of the order of 0.15%. For values of the baryon to photon ratio consistent with both cosmic microwave background observations and the primordial deuterium abundance, this uncertainty in G_N corresponds to an uncertainty in the primordial 4He mass fraction, Y_P, of +-1.3 x 10^{-4}. This uncertainty in Y_P is comparable to the effect from the current uncertainty in the neutron lifetime, which is often treated as the dominant uncertainty in calculations of Y_P. Recent measurements of G_N seem to be converging within a smaller range; a reduction in the estimated error on G_N by a factor of 10 would essentially eliminate it as a source of uncertainty in the calculation of the primordial 4He abundance.Comment: 3 pages, no figures, fixed typos, to appear in Phys. Rev.

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Health Impairments in Children and Adolescents After Hospitalization for Acute COVID-19 or MIS-C

    Get PDF
    OBJECTIVES: To evaluate risk factors for postdischarge sequelae in children and adolescents hospitalized for acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome in children (MIS-C). METHODS: Multicenter prospective cohort study conducted in 25 United States pediatric hospitals. Patients <21-years-old, hospitalized May 2020 to May 2021 for acute COVID-19 or MIS-C with follow-up 2 to 4 months after admission. We assessed readmissions, persistent symptoms or activity impairment, and new morbidities. Multivariable regression was used to calculate adjusted risk ratios (aRR) and 95% confidence intervals (CI). RESULTS: Of 358 eligible patients, 2 to 4 month survey data were available for 119 of 155 (76.8%) with acute COVID-19 and 160 of 203 (78.8%) with MIS-C. Thirteen (11%) patients with acute COVID-19 and 12 (8%) with MIS-C had a readmission. Thirty-two (26.9%) patients with acute COVID-19 had persistent symptoms (22.7%) or activity impairment (14.3%) and 48 (30.0%) with MIS-C had persistent symptoms (20.0%) or activity impairment (21.3%). For patients with acute COVID-19, persistent symptoms (aRR, 1.29 [95% CI, 1.04-1.59]) and activity impairment (aRR, 1.37 [95% CI, 1.06-1.78]) were associated with more organ systems involved. Patients with MIS-C and pre-existing respiratory conditions more frequently had persistent symptoms (aRR, 3.09 [95% CI, 1.55-6.14]) and those with obesity more frequently had activity impairment (aRR, 2.52 [95% CI, 1.35-4.69]). New morbidities were infrequent (9% COVID-19, 1% MIS-C). CONCLUSIONS: Over 1 in 4 children hospitalized with acute COVID-19 or MIS-C experienced persistent symptoms or activity impairment for at least 2 months. Patients with MIS-C and respiratory conditions or obesity are at higher risk of prolonged recovery

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore