3,485 research outputs found

    Discrete R-symmetries and Anomaly Universality in Heterotic Orbifolds

    Get PDF
    We study discrete R-symmetries, which appear in 4D low energy effective field theory derived from hetetoric orbifold models. We derive the R-symmetries directly from geometrical symmetries of orbifolds. In particular, we obtain the corresponding R-charges by requiring that the couplings be invariant under these symmetries. This allows for a more general treatment than the explicit computations of correlation functions made previously by the authors, including models with discrete Wilson lines, and orbifold symmetries beyond plane-by-plane rotational invariance. Surprisingly, for the cases covered by earlier explicit computations, the R-charges differ from the previous result. We study the anomalies associated with these R-symmetries, and comment on the results.Comment: 21 pages, 2 figures. Minor changes, typos corrected. Matches JHEP published versio

    Tibial torus and toddler's fractures misdiagnosed as transient synovitis: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The high incidence of transient synovitis in early childhood makes it the first suspected pathology in a limping child. Trauma, which has long been regarded as a causative factor for transient synovitis, may be underestimated in a non-cooperative toddler.</p> <p>After excluding most serious conditions, such as septic arthritis, a speculative diagnosis of transient synovitis can be made, and this can easily mask a subtle musculoskeletal injury.</p> <p>Case presentations</p> <p>We report the cases of three Caucasian patients (two boys, aged 20-months- and three-years-old, and one girl, aged two-years-old), with tibial torus and toddler's fractures which were late-diagnosed due to an initial misdiagnosis of transient synovitis of the hip.</p> <p>Conclusion</p> <p>In a non-cooperative child musculoskeletal trauma can be mistaken as a simple causative factor for transient synovitis of the hip and this can easily prevent further investigation for a possible subtle musculoskeletal injury of the lower extremities.</p> <p>Our experience with the presented cases suggests the need to be more vigilant in the differential diagnosis of transient synovitis in young children.</p

    Do red deer stags (Cervus elaphus) use roar fundamental frequency (F0) to assess rivals?

    Get PDF
    It is well established that in humans, male voices are disproportionately lower pitched than female voices, and recent studies suggest that this dimorphism in fundamental frequency (F0) results from both intrasexual (male competition) and intersexual (female mate choice) selection for lower pitched voices in men. However, comparative investigations indicate that sexual dimorphism in F0 is not universal in terrestrial mammals. In the highly polygynous and sexually dimorphic Scottish red deer Cervus elaphus scoticus, more successful males give sexually-selected calls (roars) with higher minimum F0s, suggesting that high, rather than low F0s advertise quality in this subspecies. While playback experiments demonstrated that oestrous females prefer higher pitched roars, the potential role of roar F0 in male competition remains untested. Here we examined the response of rutting red deer stags to playbacks of re-synthesized male roars with different median F0s. Our results show that stags’ responses (latencies and durations of attention, vocal and approach responses) were not affected by the F0 of the roar. This suggests that intrasexual selection is unlikely to strongly influence the evolution of roar F0 in Scottish red deer stags, and illustrates how the F0 of terrestrial mammal vocal sexual signals may be subject to different selection pressures across species. Further investigations on species characterized by different F0 profiles are needed to provide a comparative background for evolutionary interpretations of sex differences in mammalian vocalizations

    Linking like with like: optimising connectivity between environmentally-similar habitats

    Get PDF
    Habitat fragmentation is one of the greatest threats to biodiversity. To minimise the effect of fragmentation on biodiversity, connectivity between otherwise isolated habitats should be promoted. However, the identification of linkages favouring connectivity is not trivial. Firstly, they compete with other land uses, so they need to be cost-efficient. Secondly, linkages for one species might be barriers for others, so they should effectively account for distinct mobility requirements. Thirdly, detailed information on the auto-ecology of most of the species is lacking, so linkages need being defined based on surrogates. In order to address these challenges we develop a framework that (a) identifies environmentally-similar habitats; (b) identifies environmental barriers (i.e., regions with a very distinct environment from the areas to be linked), and; (c) determines cost-efficient linkages between environmentally-similar habitats, free from environmental barriers. The assumption is that species with similar ecological requirements occupy the same environments, so environmental similarity provides a rationale for the identification of the areas that need to be linked. A variant of the classical minimum Steiner tree problem in graphs is used to address c). We present a heuristic for this problem that is capable of handling large datasets. To illustrate the framework we identify linkages between environmentally-similar protected areas in the Iberian Peninsula. The Natura 2000 network is used as a positive ‘attractor’ of links while the human footprint is used as ‘repellent’ of links.Wecompare the outcomes of our approach with cost-efficient networks linking protected areas that disregard the effect of environmental barriers. As expected, the latter achieved a smaller area covered with linkages, but with barriers that can significantly reduce the permeability of the landscape for the dispersal of some species

    Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience

    Get PDF
    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue

    Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight

    Get PDF
    Indexación: Web of Science; PubMedBackground Berry size is considered as one of the main selection criteria in table grape breeding programs. However, this is a quantitative and polygenic trait, and its genetic determination is still poorly understood. Considering its economic importance, it is relevant to determine its genetic architecture and elucidate the mechanisms involved in its expression. To approach this issue, an RNA-Seq experiment based on Illumina platform was performed (14 libraries), including seedless segregants with contrasting phenotypes for berry weight at fruit setting (FST) and 6–8 mm berries (B68) phenological stages. Results A group of 526 differentially expressed (DE) genes were identified, by comparing seedless segregants with contrasting phenotypes for berry weight: 101 genes from the FST stage and 463 from the B68 stage. Also, we integrated differential expression, principal components analysis (PCA), correlations and network co-expression analyses to characterize the transcriptome profiling observed in segregants with contrasting phenotypes for berry weight. After this, 68 DE genes were selected as candidate genes, and seven candidate genes were validated by real time-PCR, confirming their expression profiles. Conclusions We have carried out the first transcriptome analysis focused on table grape seedless segregants with contrasting phenotypes for berry weight. Our findings contributed to the understanding of the mechanisms involved in berry weight determination. Also, this comparative transcriptome profiling revealed candidate genes for berry weight which could be evaluated as selection tools in table grape breeding programs.http://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-016-0789-

    Identification of Novel SNPs in Glioblastoma Using Targeted Resequencing

    Get PDF
    High-throughput sequencing opens avenues to find genetic variations that may be indicative of an increased risk for certain diseases. Linking these genomic data to other “omics” approaches bears the potential to deepen our understanding of pathogenic processes at the molecular level. To detect novel single nucleotide polymorphisms (SNPs) for glioblastoma multiforme (GBM), we used a combination of specific target selection and next generation sequencing (NGS). We generated a microarray covering the exonic regions of 132 GBM associated genes to enrich target sequences in two GBM tissues and corresponding leukocytes of the patients. Enriched target genes were sequenced with Illumina and the resulting reads were mapped to the human genome. With this approach we identified over 6000 SNPs, including over 1300 SNPs located in the targeted genes. Integrating the genome-wide association study (GWAS) catalog and known disease associated SNPs, we found that several of the detected SNPs were previously associated with smoking behavior, body mass index, breast cancer and high-grade glioma. Particularly, the breast cancer associated allele of rs660118 SNP in the gene SART1 showed a near doubled frequency in glioblastoma patients, as verified in an independent control cohort by Sanger sequencing. In addition, we identified SNPs in 20 of 21 GBM associated antigens providing further evidence that genetic variations are significantly associated with the immunogenicity of antigens

    International Veterinary Epilepsy Task Force Consensus Proposal: Outcome of therapeutic interventions in canine and feline epilepsy

    Get PDF
    Common criteria for the diagnosis of drug resistance and the assessment of outcome are needed urgently as a prerequisite for standardized evaluation and reporting of individual therapeutic responses in canine epilepsy. Thus, we provide a proposal for the definition of drug resistance and partial therapeutic success in canine patients with epilepsy. This consensus statement also suggests a list of factors and aspects of outcome, which should be considered in addition to the impact on seizures. Moreover, these expert recommendations discuss criteria which determine the validity and informative value of a therapeutic trial in an individual patient and also suggest the application of individual outcome criteria. Agreement on common guidelines does not only render a basis for future optimization of individual patient management, but is also a presupposition for the design and implementation of clinical studies with highly standardized inclusion and exclusion criteria. Respective standardization will improve the comparability of findings from different studies and renders an improved basis for multicenter studies. Therefore, this proposal provides an in-depth discussion of the implications of outcome criteria for clinical studies. In particular ethical aspects and the different options for study design and application of individual patient-centered outcome criteria are considered

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Transmission Characteristics of Primate Vocalizations: Implications for Acoustic Analyses

    Get PDF
    Acoustic analyses have become a staple method in field studies of animal vocal communication, with nearly all investigations using computer-based approaches to extract specific features from sounds. Various algorithms can be used to extract acoustic variables that may then be related to variables such as individual identity, context or reproductive state. Habitat structure and recording conditions, however, have strong effects on the acoustic structure of sound signals. The purpose of this study was to identify which acoustic parameters reliably describe features of propagated sounds. We conducted broadcast experiments and examined the influence of habitat type, transmission height, and re-recording distance on the validity (deviation from the original sound) and reliability (variation within identical recording conditions) of acoustic features of different primate call types. Validity and reliability varied independently of each other in relation to habitat, transmission height, and re-recording distance, and depended strongly on the call type. The smallest deviations from the original sounds were obtained by a visually-controlled calculation of the fundamental frequency. Start- and end parameters of a sound were most susceptible to degradation in the environment. Because the recording conditions can have appreciable effects on acoustic parameters, it is advisable to validate the extraction method of acoustic variables from recordings over longer distances before using them in acoustic analyses
    • 

    corecore