2,529 research outputs found

    The WFC3 Galactic Bulge Treasury Program: A First Look at Resolved Stellar Population Tools

    Full text link
    [Abridged] When WFC3 is installed on HST, the community will have powerful new tools for investigating resolved stellar populations. The WFC3 Galactic Bulge Treasury program will obtain deep imaging on 4 low-extinction fields. These non-proprietary data will enable a variety of science investigations not possible with previous data sets. To aid in planning for the use of these data and for future proposals, we provide an introduction to the program, its photometric system, and the associated calibration effort. The observing strategy is based upon a new 5-band photometric system spanning the UV, optical, and near-infrared. With these broad bands, one can construct reddening-free indices of Teff and [Fe/H]. Besides the 4 bulge fields, the program will target 6 fields in well-studied star clusters, spanning a wide range of [Fe/H]. The cluster data serve to calibrate the indices, provide population templates, and correct the transformation of isochrones into the WFC3 photometric system. The bulge data will shed light on the bulge formation history, and will also serve as population templates for other studies. One of the fields includes 12 candidate hosts of extrasolar planets. CMDs are the most popular tool for analyzing resolved stellar populations. However, due to degeneracies among Teff, [Fe/H], and reddening in traditional CMDs, it can be difficult to draw robust conclusions from the data. The 5-band system used for the bulge Treasury observations will provide indices that are roughly orthogonal in Teff and [Fe/H], and we argue that model fitting in an index-index diagram will make better use of the information than fitting separate CMDs. We provide simulations to show the expected data quality and the potential for differentiating between different star-formation histories.Comment: Accepted for publication in The Astronomical Journal. 9 pages, 8 figures, latex, AJ forma

    The antisaccade task as an index of sustained goal activation in working memory: modulation by nicotine

    Get PDF
    The antisaccade task provides a laboratory analogue of situations in which execution of the correct behavioural response requires the suppression of a more prepotent or habitual response. Errors (failures to inhibit a reflexive prosaccade towards a sudden onset target) are significantly increased in patients with damage to the dorsolateral prefrontal cortex and patients with schizophrenia. Recent models of antisaccade performance suggest that errors are more likely to occur when the intention to initiate an antisaccade is insufficiently activated within working memory. Nicotine has been shown to enhance specific working memory processes in healthy adults. MATERIALS AND METHODS: We explored the effect of nicotine on antisaccade performance in a large sample (N = 44) of young adult smokers. Minimally abstinent participants attended two test sessions and were asked to smoke one of their own cigarettes between baseline and retest during one session only. RESULTS AND CONCLUSION: Nicotine reduced antisaccade errors and correct antisaccade latencies if delivered before optimum performance levels are achieved, suggesting that nicotine supports the activation of intentions in working memory during task performance. The implications of this research for current theoretical accounts of antisaccade performance, and for interpreting the increased rate of antisaccade errors found in some psychiatric patient groups are discussed

    Phase Separation and Magnetic Order in K-doped Iron Selenide Superconductor

    Full text link
    Alkali-doped iron selenide is the latest member of high Tc superconductor family, and its peculiar characters have immediately attracted extensive attention. We prepared high-quality potassium-doped iron selenide (KxFe2-ySe2) thin films by molecular beam epitaxy and unambiguously demonstrated the existence of phase separation, which is currently under debate, in this material using scanning tunneling microscopy and spectroscopy. The stoichiometric superconducting phase KFe2Se2 contains no iron vacancies, while the insulating phase has a \surd5\times\surd5 vacancy order. The iron vacancies are shown always destructive to superconductivity in KFe2Se2. Our study on the subgap bound states induced by the iron vacancies further reveals a magnetically-related bipartite order in the superconducting phase. These findings not only solve the existing controversies in the atomic and electronic structures in KxFe2-ySe2, but also provide valuable information on understanding the superconductivity and its interplay with magnetism in iron-based superconductors

    New mobilities across the lifecourse: A framework for analysing demographically-linked drivers of migration

    Get PDF
    Date of acceptance: 17/02/2015Taking the life course as the central concern, the authors set out a conceptual framework and define some key research questions for a programme of research that explores how the linked lives of mobile people are situated in time–space within the economic, social, and cultural structures of contemporary society. Drawing on methodologically innovative techniques, these perspectives can offer new insights into the changing nature and meanings of migration across the life course.Publisher PDFPeer reviewe

    Inverse Estimation of an Annual Cycle of California's Nitrous Oxide Emissions

    Get PDF
    Nitrous oxide (N_2O) is a potent long‐lived greenhouse gas (GHG) and the strongest current emissions of global anthropogenic stratospheric ozone depletion weighted by its ozone depletion potential. In California, N_2O is the third largest contributor to the state's anthropogenic GHG emission inventory, though no study has quantified its statewide annual emissions through top‐down inverse modeling. Here we present the first annual (2013–2014) statewide top‐down estimates of anthropogenic N_2O emissions. Utilizing continuous N_2O observations from six sites across California in a hierarchical Bayesian inversion, we estimate that annual anthropogenic emissions are 1.5–2.5 times (at 95% confidence) the state inventory (41 Gg N_2O in 2014). Without mitigation, this estimate represents 4–7% of total GHG emissions assuming that other reported GHG emissions are reasonably correct. This suggests that control of N_2O could be an important component in meeting California's emission reduction goals of 40% and 80% below 1990 levels of the total GHG emissions (in CO_2 equivalent) by 2030 and 2050, respectively. Our seasonality analysis suggests that emissions are similar across seasons within posterior uncertainties. Future work is needed to provide source attribution for subregions and further characterization of seasonal variability

    Transiting extrasolar planetary candidates in the Galactic bulge

    Get PDF
    More than 200 extrasolar planets have been discovered around relatively nearby stars, primarily through the Doppler line shifts owing to the reflex motions of their host stars, and more recently through transits of some planets across the face of the host stars. The detection of planets with the shortest known periods, 1.2 to 2.5 days, has mainly resulted from transit surveys which have generally targeted stars more massive than 0.75 M_sun. Here we report the results from a planetary transit search performed in a rich stellar field towards the Galactic bulge. We discovered 16 candidates with orbital periods between 0.4 and 4.2 days, five of which orbit stars of 0.44 to 0.75 M_sun. In two cases, radial-velocity measurements support the planetary nature of the companions. Five candidates have orbital periods below 1.0 day, constituting a new class of ultra-short-period planets (USPPs), which occur only around stars of less than 0.88 M_sun. This indicates that those orbiting very close to more luminous stars might be evaporatively destroyed, or that jovian planets around lower-mass stars might migrate to smaller radii.Comment: To appear in October 5, 2006 issue of Natur

    Search for solar axion emission from 7Li and D(p,gamma)3He nuclear decays with the CAST gamma-ray calorimeter

    Full text link
    We present the results of a search for a high-energy axion emission signal from 7Li (0.478 MeV) and D(p,gamma)3He (5.5 MeV) nuclear transitions using a low-background gamma-ray calorimeter during Phase I of the CAST experiment. These so-called "hadronic axions" could provide a solution to the long-standing strong-CP problem and can be emitted from the solar core from nuclear M1 transitions. This is the first such search for high-energy pseudoscalar bosons with couplings to nucleons conducted using a helioscope approach. No excess signal above background was found.Comment: 20 pages, 8 figures, final version to be published in JCA
    corecore