6,356 research outputs found
Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells
We demonstrate enhanced external quantum efficiency and current-voltage characteristics due to scattering by 100 nm silver nanoparticles in a single 2.5 nm thick InGaN quantum well photovoltaic device. Nanoparticle arrays were fabricated on the surface of the device using an anodic alumina template masking process. The Ag nanoparticles increase light scattering, light trapping, and carrier collection in the III-N semiconductor layers leading to enhancement of the external quantum efficiency by up to 54%. Additionally, the short-circuit current in cells with 200 nm p-GaN emitter regions is increased by 6% under AM 1.5 illumination. AFORS-Het simulation software results were used to predict cell performance and optimize emitter layer thickness
Kinetic Mechanism for Single stranded DNA binding and Translocation by S. cerevisiae Isw2
The chromatin remodeling complex Isw2 from S. cerevisiae (yIsw2) mobilizes nucleosomes through an ATP-dependent reaction that is coupled to the translocation of the helicase domain of the enzyme along intranucleosomal DNA. In this study we demonstrate that yIsw2 is capable of translocating along single-stranded DNA in a reaction that is coupled to ATP hydrolysis. We propose that single-stranded DNA translocation by yIsw2 occurs through a series of repeating uniform steps with an overall macroscopic processivity of P = (0.90 ± 0.02), corresponding to an average translocation distance of (20 ± 2) nucleotides before dissociation. This processivity corresponds well to the processivity of nucleosome sliding by yIsw2 thus arguing that single-stranded DNA translocation or tracking may be fundamental to the double-stranded DNA translocation required for effective nucleosome mobilization. Furthermore, we find evidence that a slow initiation process, following DNA binding, may be required to make yIsw2 competent for DNA translocation. We also provide evidence that this slow initiation process may correspond to the second step of a two-step DNA binding mechanism by yIsw2 and a quantitative description of the kinetics of this DNA binding mechanism
Towards Functional Flows for Hierarchical Models
The recursion relations of hierarchical models are studied and contrasted
with functional renormalisation group equations in corresponding
approximations. The formalisms are compared quantitatively for the Ising
universality class, where the spectrum of universal eigenvalues at criticality
is studied. A significant correlation amongst scaling exponents is pointed out
and analysed in view of an underlying optimisation. Functional flows are
provided which match with high accuracy all known scaling exponents from
Dyson's hierarchical model for discrete block-spin transformations.
Implications of the results are discussed.Comment: 17 pages, 4 figures; wording sharpened, typos removed, reference
added; to appear with PR
Predicting spatial spread of rabies in skunk populations using surveillance data reported by the public
Background:
Prevention and control of wildlife disease invasions relies on the ability to predict spatio-temporal dynamics and understand the role of factors driving spread rates, such as seasonality and transmission distance. Passive disease surveillance (i.e., case reports by public) is a common method of monitoring emergence of wildlife diseases, but can be challenging to interpret due to spatial biases and limitations in data quantity and quality.
Methodology/Principal findings:
We obtained passive rabies surveillance data from dead striped skunks (Mephitis mephitis) in an epizootic in northern Colorado, USA. We developed a dynamic patch-occupancy model which predicts spatio-temporal spreading while accounting for heterogeneous sampling. We estimated the distance travelled per transmission event, direction of invasion, rate of spatial spread, and effects of infection density and season. We also estimated mean transmission distance and rates of spatial spread using a phylogeographic approach on a subsample of viral sequences from the same epizootic. Both the occupancy and phylogeographic approaches predicted similar rates of spatio-temporal spread. Estimated mean transmission distances were 2.3 km (95% Highest Posterior Density (HPD95): 0.02, 11.9; phylogeographic) and 3.9 km (95% credible intervals (CI95): 1.4, 11.3; occupancy). Estimated rates of spatial spread in km/year were: 29.8 (HPD95: 20.8, 39.8; phylogeographic, branch velocity, homogenous model), 22.6 (HPD95: 15.3, 29.7; phylogeographic, diffusion rate, homogenous model) and 21.1 (CI95: 16.7, 25.5; occupancy). Initial colonization probability was twice as high in spring relative to fall.
Conclusions/Significance:
Skunk-to-skunk transmission was primarily local (< 4 km) suggesting that if interventions were needed, they could be applied at the wave front. Slower viral invasions of skunk rabies in western USA compared to a similar epizootic in raccoons in the eastern USA implies host species or landscape factors underlie the dynamics of rabies invasions. Our framework provides a straightforward method for estimating rates of spatial spread of wildlife diseases
MILP approach for then design of vertical vapor-liquid separation vessels-comparison with heuristics
In this article we compare results from different heuristics approaches for the design of VLE separation vessels. In addition, we present an MILP approach that embeds the aforementioned heuristics and considers the discrete nature of the geometric variables. We show that different heuristics render different results and, while results from heuristics and MILP often coincide, significant departures occur.Fil: Fischer, Carlos Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Costa, André Hemerly L.. Universidade do Estado de Rio do Janeiro; BrasilFil: Bagajewicz, Miguel J.. Oklahoma State University; Estados Unido
Multiple Scattering Mechanisms in Simultaneous Projectile-Electron and Target-Electron Ejection in H⁻ + He Collisions
We studied simultaneous electron ejection from both collision partners in 200-keV H-+He collisions in a kinematically complete experiment by measuring the fully momentum-analyzed recoil ions and both active electrons in coincidence. The data were analyzed in terms of Dalitz spectra, in which the momentum exchange between three particles is plotted simultaneously in a single spectrum. We found that the energy transfer occurs predominantly between the active electrons, but most of the momentum is exchanged in elastic scattering between the cores of the collision partners
Recommended from our members
The Role of the Ocean in the Global Atmospheric Budget of Acetone
[1] Acetone is one of the most abundant carbonyl compounds in the atmosphere and it plays an important role in atmospheric chemistry. The role of the ocean in the global atmospheric acetone budget is highly uncertain, with past studies reaching opposite conclusions as to whether the ocean is a source or sink. Here we use a global 3-D chemical transport model (GEOS-Chem) simulation of atmospheric acetone to evaluate the role of air-sea exchange in the global budget. Inclusion of updated (slower) photolysis loss in the model means that a large net ocean source is not needed to explain observed acetone in marine air. We find that a simulation with a fixed seawater acetone concentration of 15 nM based on observations can reproduce the observed global patterns of atmospheric concentrations and air-sea fluxes. The Northern Hemisphere oceans are a net sink for acetone while the tropical oceans are a net source. On a global scale the ocean is in near-equilibrium with the atmosphere. Prescribing an ocean concentration of acetone as a boundary condition in the model assumes that ocean concentrations are controlled by internal production and loss, rather than by air-sea exchange. An implication is that the ocean plays a major role in controlling atmospheric acetone. This hypothesis needs to be tested by better quantification of oceanic acetone sources and sinks.Engineering and Applied Science
Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows
We thank Mari Talvisilta and the staff in the metabolism unit at Natural Resources Institute Finland for technical support, care of experimental animals and assistance in sample collection. We thank Paula Lidauer for ruminal cannulation surgeries, Richard Hill from Aberystwyth University, UK for performing qPCR and Aurélie Bonin from Laboratoire d'Ecologie Alpine, CNRS, France for preparing archaea amplicon libraries for sequencing. Kevin J. Shingfield passed away before the submission of the final version of this manuscript. Ilma Tapio accepts responsibility for the integrity and validity of the data collected and analyzed. Funding: Study was funded by the Finnish Ministry of Agriculture and Forestry as part of the GreenDairy Project (Developing Genetic and Nutritional Tools to Mitigate the Environmental Impact of Milk Production; Project No. 2908234). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Unfrustrated Qudit Chains and their Ground States
We investigate chains of 'd' dimensional quantum spins (qudits) on a line
with generic nearest neighbor interactions without translational invariance. We
find the conditions under which these systems are not frustrated, i.e. when the
ground states are also the common ground states of all the local terms in the
Hamiltonians. The states of a quantum spin chain are naturally represented in
the Matrix Product States (MPS) framework. Using imaginary time evolution in
the MPS ansatz, we numerically investigate the range of parameters in which we
expect the ground states to be highly entangled and find them hard to
approximate using our MPS method.Comment: 5 pages, 5 figures. Typos correcte
Triple-Differential Cross Sections for Target Ionization with Simultaneous Projectile Detachment in 200-keV H⁻ + He Collisions
We have performed a kinematically complete experiment for target ionization with simultaneous projectile detachment (TIPD) in 200-keV H− + He collisions. From the data we extracted triple-differential cross sections (TDCSs) for each electron separately. These TDCSs closely resemble corresponding data for single ionization by charged-particle impact. Surprisingly, the contributions from higher-order processes to TIPD, proceeding through two independent interactions of each electron with the core of the respective other collision partner, are found to be somewhat larger than the first-order process proceeding through the electron-electron interaction
- …