175 research outputs found

    Ferritins: furnishing proteins with iron

    Get PDF
    Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins

    Mucosal Lipocalin 2 Has Pro-Inflammatory and Iron-Sequestering Effects in Response to Bacterial Enterobactin

    Get PDF
    Nasal colonization by both gram-positive and gram-negative pathogens induces expression of the innate immune protein lipocalin 2 (Lcn2). Lcn2 binds and sequesters the iron-scavenging siderophore enterobactin (Ent), preventing bacterial iron acquisition. In addition, Lcn2 bound to Ent induces release of IL-8 from cultured respiratory cells. As a countermeasure, pathogens of the Enterobacteriaceae family such as Klebsiella pneumoniae produce additional siderophores such as yersiniabactin (Ybt) and contain the iroA locus encoding an Ent glycosylase that prevents Lcn2 binding. Whereas the ability of Lcn2 to sequester iron is well described, the ability of Lcn2 to induce inflammation during infection is unknown. To study each potential effect of Lcn2 on colonization, we exploited K. pneumoniae mutants that are predicted to be susceptible to Lcn2-mediated iron sequestration (iroA ybtS mutant) or inflammation (iroA mutant), or to not interact with Lcn2 (entB mutant). During murine nasal colonization, the iroA ybtS double mutant was inhibited in an Lcn2-dependent manner, indicating that the iroA locus protects against Lcn2-mediated growth inhibition. Since the iroA single mutant was not inhibited, production of Ybt circumvents the iron sequestration effect of Lcn2 binding to Ent. However, colonization with the iroA mutant induced an increased influx of neutrophils compared to the entB mutant. This enhanced neutrophil response to Ent-producing K. pneumoniae was Lcn2-dependent. These findings suggest that Lcn2 has both pro-inflammatory and iron-sequestering effects along the respiratory mucosa in response to bacterial Ent. Therefore, Lcn2 may represent a novel mechanism of sensing microbial metabolism to modulate the host response appropriately

    Stem cell transplantation for type 1 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of stem cells to treat type 1 diabetes mellitus has been proposed for many years, both to downregulate the immune system and to provide β cell regeneration.</p> <p>Conclusion</p> <p>High dose immunosuppression followed by autologous hematopoietic stem cell transplantation is able to induce complete remission (insulin independence) in most patients with early onset type 1 diabetes mellitus.</p

    Use of machine learning to shorten observation-based screening and diagnosis of autism

    Get PDF
    The Autism Diagnostic Observation Schedule-Generic (ADOS) is one of the most widely used instruments for behavioral evaluation of autism spectrum disorders. It is composed of four modules, each tailored for a specific group of individuals based on their language and developmental level. On average, a module takes between 30 and 60 min to deliver. We used a series of machine-learning algorithms to study the complete set of scores from Module 1 of the ADOS available at the Autism Genetic Resource Exchange (AGRE) for 612 individuals with a classification of autism and 15 non-spectrum individuals from both AGRE and the Boston Autism Consortium (AC). Our analysis indicated that 8 of the 29 items contained in Module 1 of the ADOS were sufficient to classify autism with 100% accuracy. We further validated the accuracy of this eight-item classifier against complete sets of scores from two independent sources, a collection of 110 individuals with autism from AC and a collection of 336 individuals with autism from the Simons Foundation. In both cases, our classifier performed with nearly 100% sensitivity, correctly classifying all but two of the individuals from these two resources with a diagnosis of autism, and with 94% specificity on a collection of observed and simulated non-spectrum controls. The classifier contained several elements found in the ADOS algorithm, demonstrating high test validity, and also resulted in a quantitative score that measures classification confidence and extremeness of the phenotype. With incidence rates rising, the ability to classify autism effectively and quickly requires careful design of assessment and diagnostic tools. Given the brevity, accuracy and quantitative nature of the classifier, results from this study may prove valuable in the development of mobile tools for preliminary evaluation and clinical prioritization—in particular those focused on assessment of short home videos of children—that speed the pace of initial evaluation and broaden the reach to a significantly larger percentage of the population at risk

    An ENU-Induced Mutation of Nrg1 Causes Dilated Pupils and a Reduction in Muscarinic Receptors in the Sphincter Pupillae

    Get PDF
    BACKGROUND: N-ethyl-N-nitrosourea (ENU)-induced mutagenesis is a powerful tool for the study of gene function and the generation of human disease models. A large number of mouse mutants obtained by ENU-induced mutagenesis with a variety of phenotypes have been recovered. However, after genetic confirmation testing, only approximately 50% of the abnormal phenotypes were found to be heritable. METHODOLOGY/PRINCIPAL FINDINGS: A mouse mutant, Dp1, with a dilated pupil phenotype was induced with an N-ethyl-N-nitrosourea (ENU) mutagenesis strategy. Sequence analysis for Nrg1 reveals a G>A base substitution that flanks exon E59, encoding for an EGFβ domain, in the 5' splice donor site. The mutation affects but does not abolish the splicing of EGFβ-type Nrg1 mRNA in Dp1 mice and produces several different transcripts by activating other, cryptic splice sites. These types of protein isoforms are expected, and the result shows that, in the mutant, the effect is a decrease in but not an elimination of the high affinity EGFβ-type Nrg1 isoforms. This is partially compensated for by an increase in expression of the low affinity alpha forms or inactive proteins, suggesting that the mutation results in a hypomorphic allele. Interestingly, genetic model testing shows that Dp1 is a mutation that results in a dilated pupil phenotype that is inherited with very low penetrance when heterozygous and with complete penetrance when homozygous. Pharmacological and immunohistochemical tests show a reduction of muscarinic (M) receptors in the sphincter pupillae of Dp1 mice, which is a major cause of dilated pupils. CONCLUSIONS/SIGNIFICANCE: This study is the first report of an Nrg1 mutation being associated with a dilated pupil phenotype and the reduction of M receptors. This report may help in establishing more mutant mouse lines and models of human genetic disease and can be applied to other organisms. Dp1 mice are a valuable resource for the further clarification of Nrg1 biological function

    Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population

    Get PDF
    Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of that risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortia and population based resources, we find genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both inherited and de novo variation, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral and developmental traits, the severe tail of which can result in an ASD or other neuropsychiatric disorder diagnosis. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology

    Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk

    Get PDF
    Coding variants represent many of the strongest associations between genotype and phenotype; however, they exhibit interindividual differences in effect, termed 'variable penetrance'. Here, we study how cis-regulatory variation modifies the penetrance of coding variants. Using functional genomic and genetic data from the Genotype-Tissue Expression Project (GTEx), we observed that in the general population, purifying selection has depleted haplotype combinations predicted to increase pathogenic coding variant penetrance. Conversely, in cancer and autism patients, we observed an enrichment of penetrance increasing haplotype configurations for pathogenic variants in disease-implicated genes, providing evidence that regulatory haplotype configuration of coding variants affects disease risk. Finally, we experimentally validated this model by editing a Mendelian single-nucleotide polymorphism (SNP) using CRISPR/Cas9 on distinct expression haplotypes with the transcriptome as a phenotypic readout. Our results demonstrate that joint regulatory and coding variant effects are an important part of the genetic architecture of human traits and contribute to modified penetrance of disease-causing variants.Peer reviewe

    Widespread Occurrence of Secondary Lipid Biosynthesis Potential in Microbial Lineages

    Get PDF
    Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as “Pfa synthases”. In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of “secondary lipids” to describe these biosynthetic pathways and products, a proposition consistent with the “secondary metabolite” vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages
    corecore