5 research outputs found

    Ancient Genomic Regulatory Blocks Are a Source for Regulatory Gene Deserts in Vertebrates after Whole-Genome Duplications

    Full text link
    We investigated how the two rounds of whole genome duplication that occurred at the base of the vertebrate lineage have impacted ancient microsyntenic associations involving developmental regulators (known as genomic regulatory blocks, GRBs). We showed that the majority of GRBs identified in the last common ancestor of chordates have been maintained as a single copy in humans. We found evidence that dismantling of the duplicated GRB copies occurred early in vertebrate evolution often through the differential retention of the regulatory gene but loss of the bystander gene's exonic sequences. Despite the large evolutionary scale, the presence of duplicated highly conserved non-coding regions provided unambiguous proof for this scenario for multiple ancient GRBs. Remarkably, the dismantling of ancient GRB duplicates has contributed to the creation of large gene deserts associated with regulatory genes in vertebrates, providing a potentially widespread mechanism for the origin of these enigmatic genomic traits

    Dynamic changes in the epigenomic landscape regulate human organogenesis and link to developmental disorders

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2019-10-04, accepted 2020-06-18, registration 2020-06-24, pub-electronic 2020-08-06, online 2020-08-06, collection 2020-12Publication status: PublishedFunder: RCUK | Medical Research Council (MRC); doi: https://doi.org/10.13039/501100000265; Grant(s): CRTF, PhD studentship, MR/J003352/1, MR/L009986/1, MR/L009986/1, MR/S036121/1, MR/000638/1Funder: Academy of Medical Sciences; doi: https://doi.org/10.13039/501100000691; Grant(s): Lecturer starter grantFunder: Wellcome Trust (Wellcome); doi: https://doi.org/10.13039/100004440; Grant(s): 088566, 097820, 105610Abstract: How the genome activates or silences transcriptional programmes governs organ formation. Little is known in human embryos undermining our ability to benchmark the fidelity of stem cell differentiation or cell programming, or interpret the pathogenicity of noncoding variation. Here, we study histone modifications across thirteen tissues during human organogenesis. We integrate the data with transcription to build an overview of how the human genome differentially regulates alternative organ fates including by repression. Promoters from nearly 20,000 genes partition into discrete states. Key developmental gene sets are actively repressed outside of the appropriate organ without obvious bivalency. Candidate enhancers, functional in zebrafish, allow imputation of tissue-specific and shared patterns of transcription factor binding. Overlaying more than 700 noncoding mutations from patients with developmental disorders allows correlation to unanticipated target genes. Taken together, the data provide a comprehensive genomic framework for investigating normal and abnormal human development

    Amphioxus functional genomics and the origins of vertebrate gene regulation.

    Get PDF
    Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations

    Ancient genomic regulatory blocks are a source for regulatory gene deserts in vertebrates after whole-genome duplications

    No full text
    We investigated how the two rounds of whole-genome duplication that occurred at the base of the vertebrate lineage have impacted ancient microsyntenic associations involving developmental regulators (known as genomic regulatory blocks, GRBs). We showed that the majority of GRBs identified in the last common ancestor of chordates have been maintained as a single copy in humans. We found evidence that dismantling of the duplicated GRB copies occurred early in vertebrate evolution often through the differential retention of the regulatory gene but loss of the bystander gene's exonic sequences. Despite the large evolutionary scale, the presence of duplicated highly conserved noncoding regions provided unambiguous proof for this scenario for multiple ancient GRBs. Remarkably, the dismantling of ancient GRB duplicates has contributed to the creation of large gene deserts associated with regulatory genes in vertebrates, providing a potentially widespread mechanism for the origin of these enigmatic genomic traits.The research has been funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC-StG-LS2-637591 to M.I. and ERC-AdG-LS8-740041 to J.L.G.-S.), the Spanish Ministry of Science and Innovation (BFU2017-89201-P to M.I., RYC-2016-20089 and PGC2018-099392-A-I00 to I.M., BFU2016-74961-P to J.L.G.-S., and BFU2016-81887-REDT/AEI to J.L.G.-S. and M.I.), the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement 608959, the “Centro de Excelencia Severo Ochoa 2013-2017” (SEV-2012-0208), and the “Unidad de Excelencia María de Maetzu 2017-2021” (MDM-2016-0687). We acknowledge the support of the CERCA Programme/Generalitat de Catalunya and of the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) to the EMBL partnershi
    corecore