17 research outputs found

    Recent Developments

    Get PDF
    Context. Tracing nuclear inflows and outflows in active galactic nuclei (AGNs), determining the mass of gas involved in them, and their impact on the host galaxy and nuclear black hole requires 3D imaging studies of both the ionized and molecular gas. Aims. We map the distribution and kinematics of molecular and ionized gas in a sample of active galaxies to quantify the nuclear inflows and outflows. Here, we analyze the nuclear kinematics of NGC 1566 via ALMA observations of the CO J:2-1 emission at 24 pc spatial and ∌2.6 km s−1 spectral resolution, and Gemini-GMOS/IFU observations of ionized gas emission lines and stellar absorption lines at similar spatial resolution, and 123 km s−1 of intrinsic spectral resolution. Methods. The morphology and kinematics of stellar, molecular (CO), and ionized ([N II]) emission lines are compared to the expectations from rotation, outflows, and streaming inflows. Results. While both ionized and molecular gas show rotation signatures, there are significant non-circular motions in the innermost 200 pc and along spiral arms in the central kpc (CO). The nucleus shows a double-peaked CO profile (full width at zero intensity of 200 km s−1), and prominent (∌80 km s−1) blue- and redshifted lobes are found along the minor axis in the inner arcseconds. Perturbations by the large-scale bar can qualitatively explain all features in the observed velocity field. We thus favor the presence of a molecular outflow in the disk with true velocities of ∌180 km s−1 in the nucleus and decelerating to 0 by ∌72 pc. The implied molecular outflow rate is 5.6 M⊙ yr−1, with this gas accumulating in the nuclear 2″ arms. The ionized gas kinematics support an interpretation of a similar but more spherical outflow in the inner 100 pc, with no signs of deceleration. There is some evidence of streaming inflows of ∌50 km s−1 along specific spiral arms, and the estimated molecular mass inflow rate, ∌0.1 M⊙ yr−1, is significantly higher than the SMBH accretion rate (áč = 4.8 × 10−5 M⊙ yr−1)

    An outflow in the Seyfert ESO 362-G18 revealed by Gemini-GMOS/IFU Observations

    Get PDF
    We present two-dimensional stellar and gaseous kinematics of the inner 0.7 ×\times 1.2 kpc2^{2} of the Seyfert galaxy ESO 362-G18, derived from optical spectra obtained with the GMOS/IFU on the Gemini South telescope at a spatial resolution of ≈\approx170 pc and spectral resolution of 36 km s−1^{-1}. ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [OIII] emission shows a fan-shaped extension of ≈\approx 10\arcsec\ to the SE. We detect the [OIII] doublet, [NII] and Hα{\alpha} emission lines throughout our field of view. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of ≈\approx137∘^{\circ}. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122∘^{\circ} to 139∘^{\circ}. A double-Gaussian fit to the [OIII]λ\lambda5007 and Hα{\alpha} lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight velocities 100-250 km s−1^{-1} higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 ×\times 10−2^{-2} M⊙_{\odot} yr−1^{-1} in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 ×\times 10−2^{-2} M⊙_{\odot} yr−1^{-1}. The total ionized gas mass within ∌\sim84 pc of the nucleus is 3.3 ×\times 105^{5} M⊙_{\odot}; infall velocities of ∌\sim34 km s−1^{-1} in this gas would be required to feed both the outflow and SMBH accretion.Comment: 18 pages, 14 figure

    Signatures of Feedback in the Spectacular Extended Emission Region of NGC 5972

    Get PDF
    We present Chandra X-ray Observatory observations and Space Telescope Imaging Spectrograph spectra of NGC 5972, one of the 19 ‘Voorwerpjes’ galaxies. This galaxy contains an extended emission-line region (EELR) and an arcsecond scale nuclear bubble. NGC 5972 is a faded active galactic nucleus (AGN), with EELR luminosity suggesting a 2.1 dex decrease in Lbol in the last ∌5 ×104 yr. We investigate the role of AGN feedback in exciting the EELR and bubble given the long-term variability and potential accretion state changes. We detect broad-band (0.3–8 keV) X-ray emission in the near-nuclear regions, coincident with the [O III ] bubble, as well as diffuse soft X-ray emission coincident with the EELR. The soft nuclear (0.5–1.5 keV) emission is spatially extended and the spectra are consistent with two APEC thermal populations ( ∌0.80 and ∌0.10 keV). We find a bubble age \u3e 2.2 Myr, suggesting formation before the current variability. We find evidence for efficient feedback with Pkin /Lbol ∌0.8 per cent, which may be overestimated given the recent Lbol variation. [O III] kinematics show a 300 km s−1 high-ionization velocity consistent with disturbed rotation or potentially the line-of-sight component of a ∌780 km s−1 thermal X-ray outflow capable of driving strong shocks to photoionize the precursor material. We explore possibilities to explain the overall jet, radio lobe and EELR misalignment including evidence for a double supermassive black hole which could support a complex misaligned system

    An outflow in the Seyfert ESO 362-G18 revealed by Gemini-GMOS/IFU observations

    Get PDF
    We present two-dimensional stellar and gaseous kinematics of the inner 0.7 × 1.2 kpc2 of the Seyfert 1.5 galaxy ESO 362-G18, derived from optical (4092–7338 Å) spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈170 pc and spectral resolution of 36 km s-Âč. ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [O III] emission shows a fan-shaped extension of ≈10â€Čâ€Č to the SE. We detect the [O III] doublet, [N II] and Hα emission lines throughout our field of view. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of ≈137° and is centred approximately on the continuum peak. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122° to 139°, projected velocity amplitudes of the order of 100 km s-Âč, and a mean velocity dispersion of 100 km s-Âč. A double-Gaussian fit to the [O III]λ5007 and Hα lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight velocities 100–250 km s-Âč higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 × 10-ÂČ M⊙yr-Âč in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 × 10−2 M⊙ yr−1. The total ionized gas mass within ~84 pc of the nucleus is 3.3 × 105 M⊙; infall velocities of ~34 km s−1 in this gas would be required to feed both the outflow and SMBH accretion

    Signatures of Feedback in the Spectacular Extended Emission Region of NGC 5972

    Get PDF
    We present Chandra X-ray Observatory observations and Space Telescope Imaging Spectrograph spectra of NGC 5972, one of the 19 ‘Voorwerpjes’ galaxies. This galaxy contains an extended emission-line region (EELR) and an arcsecond scale nuclear bubble. NGC 5972 is a faded active galactic nucleus (AGN), with EELR luminosity suggesting a 2.1 dex decrease in Lbol in the last ∌5 × 104 yr. We investigate the role of AGN feedback in exciting the EELR and bubble given the long-term variability and potential accretion state changes. We detect broad-band (0.3–8 keV) X-ray emission in the near-nuclear regions, coincident with the [O iii] bubble, as well as diffuse soft X-ray emission coincident with the EELR. The soft nuclear (0.5–1.5 keV) emission is spatially extended and the spectra are consistent with two apec thermal populations (∌0.80 and ∌0.10 keV). We find a bubble age >2.2 Myr, suggesting formation before the current variability. We find evidence for efficient feedback with Pkin/Lbol∌0.8  per centP_{\textrm {kin}}/L_{\textrm {bol}}\sim 0.8~{{\ \rm per\ cent}}, which may be overestimated given the recent Lbol variation. [O iii] kinematics show a 300 km s−1 high-ionization velocity consistent with disturbed rotation or potentially the line-of-sight component of a ∌780 km s−1 thermal X-ray outflow capable of driving strong shocks to photoionize the precursor material. We explore possibilities to explain the overall jet, radio lobe and EELR misalignment including evidence for a double supermassive black hole which could support a complex misaligned system

    The complex jet- and bar- perturbed kinematics in NGC 3393 as revealed with ALMA and GEMINI–GMOS/IFU

    Get PDF
    NGC 3393, a nearby Seyfert 2 galaxy with nuclear radio jets, large-scale and nuclear bars, and a posited secondary supermassive black hole, provides an interesting laboratory to test the physics of inflows and outflows. Here we present and analyse the molecular gas [ALMA observations of CO J:2-1 emission over a field of view (FOV) of 45 arcsec × 45 arcsec, at 0. 56 (143 pc) spatial and 5 kms−1 spectral resolution), ionized gas and stars (GEMINI–GMOS/IFU; over an FOV of 4 arcsec × 5 arcsec, at 0. 62 (159 pc) spatial and 23 km s−1 spectral resolution) in NGC 3393. The ionized gas emission, detected over the complete GEMINI–GMOS FOV, has three identifiable kinematic components. A narrow (σ 115 km s−1) redshifted component, detected near the NE and SW radio lobes; which we interpret as a radio jet-driven outflow. And a broad (σ > 115 km s−1) blueshifted component that shows high velocities in a region perpendicular to the radio jet axis; we interpret this as an equatorial outflow. The CO J:2-1 emission is detected in spiral arms on 5–20 arcsec scales, and in two disturbed circumnuclear regions. The molecular kinematics in the spiral arms can be explained by rotation. The highly disturbed kinematics of the inner region can be explained by perturbations induced by the nuclear bar and interactions with the large scale bar. We find no evidence for, but cannot strongly rule out, the presence of the posited secondary black hole

    An outflow in the Seyfert ESO 362-G18 revealed by Gemini-GMOS/IFU observations

    Get PDF
    Contains fulltext : 193083.pdf (publisher's version ) (Open Access

    The complex jet- and bar- perturbed kinematics in NGC 3393 as revealed with ALMA and GEMINI–GMOS/IFU

    No full text
    NGC 3393, a nearby Seyfert 2 galaxy with nuclear radio jets, large-scale and nuclear bars, and a posited secondary supermassive black hole, provides an interesting laboratory to test the physics of inflows and outflows. Here we present and analyse the molecular gas [ALMA observations of CO J:2-1 emission over a field of view (FOV) of 45 arcsec × 45 arcsec, at 0. 56 (143 pc) spatial and 5 kms−1 spectral resolution), ionized gas and stars (GEMINI–GMOS/IFU; over an FOV of 4 arcsec × 5 arcsec, at 0. 62 (159 pc) spatial and 23 km s−1 spectral resolution) in NGC 3393. The ionized gas emission, detected over the complete GEMINI–GMOS FOV, has three identifiable kinematic components. A narrow (σ 115 km s−1) redshifted component, detected near the NE and SW radio lobes; which we interpret as a radio jet-driven outflow. And a broad (σ > 115 km s−1) blueshifted component that shows high velocities in a region perpendicular to the radio jet axis; we interpret this as an equatorial outflow. The CO J:2-1 emission is detected in spiral arms on 5–20 arcsec scales, and in two disturbed circumnuclear regions. The molecular kinematics in the spiral arms can be explained by rotation. The highly disturbed kinematics of the inner region can be explained by perturbations induced by the nuclear bar and interactions with the large scale bar. We find no evidence for, but cannot strongly rule out, the presence of the posited secondary black hole

    Outflowing gas in a compact ionization cone in the Seyfert 2 galaxy ESO 153-G20

    Get PDF
    Contains fulltext : 208877.pdf (publisher's version ) (Open Access

    Detailed Accretion History of the Supermassive Black Hole in NGC 5972 over the Past ≳10 yr through the Extended Emission-line Region

    No full text
    We present integral field spectroscopic observations of NGC 5972 obtained with the Multi-Unit Spectroscopic Explorer at the Very Large Telescope. NGC 5972 is a nearby galaxy containing both an active galactic nucleus (AGN) and an extended emission-line region (EELR) reaching out to ∌17 kpc from the nucleus. We analyze the physical conditions of the EELR using spatially resolved spectra, focusing on the radial dependence of ionization state together with the light-travel time distance to probe the variability of the AGN on ≳10⁎ yr timescales. The kinematic analysis suggests multiple components: (a) a faint component following the rotation of the large-scale disk, (b) a component associated with the EELR suggestive of extraplanar gas connected to tidal tails, and (c) a kinematically decoupled nuclear disk. Both the kinematics and the observed tidal tails suggest a major past interaction event. Emission-line diagnostics along the EELR arms typically evidence Seyfert-like emission, implying that the EELR was primarily ionized by the AGN. We generate a set of photoionization models and fit these to different regions along the EELR. This allows us to estimate the bolometric luminosity required at different radii to excite the gas to the observed state. Our results suggest that NGC 5972 is a fading quasar, showing a steady gradual decrease in intrinsic AGN luminosity, and hence the accretion rate onto the SMBH, by a factor ∌100 over the past 5 × 10⁎ yr.ISSN:0004-637XISSN:2041-821
    corecore