73 research outputs found

    Imaging of Low Compressibility Strips in the Quantum Hall Liquid

    Full text link
    Using Subsurface Charge Accumulation scanning microscopy we image strips of low compressibility corresponding to several integer Quantum Hall filling factors. We study in detail the strips at Landau level filling factors Μ=\nu = 2 and 4. The observed strips appear significantly wider than predicted by theory. We present a model accounting for the discrepancy by considering a disorder-induced nonzero density of states in the cyclotron gap.Comment: 5 pages, 3 figure

    Role of electrostatic interactions in amyloid beta-protein (Abeta) oligomer formation: A discrete molecular dynamics study

    Get PDF
    Pathological folding and oligomer formation of the amyloid beta-protein (Abeta) are widely perceived as central to Alzheimer's disease (AD). Experimental approaches to study Abeta self-assembly are problematic, because most relevant aggregates are quasi-stable and inhomogeneous. We apply a discrete molecular dynamics (DMD) approach combined with a four-bead protein model to study oligomer formation of the amyloid beta-protein (Abeta). We address the differences between the two most common Abeta alloforms, Abeta40 and Abeta42, which oligomerize differently in vitro. We study how the presence of electrostatic interactions (EIs) between pairs of charged amino acids affects Abeta40 and Abeta42 oligomer formation. Our results indicate that EIs promote formation of larger oligomers in both Abeta40 and Abeta42. The Abeta40 size distribution remains unimodal, whereas the Abeta42 distribution is trimodal, as observed experimentally. Abeta42 folded structure is characterized by a turn in the C-terminus that is not present in Abeta40. We show that the same C-terminal region is also responsible for the strongest intermolecular contacts in Abeta42 pentamers and larger oligomers. Our results suggest that this C-terminal region plays a key role in the formation of Abeta42 oligomers and the relative importance of this region increases in the presence of EIs. These results suggest that inhibitors targeting the C-terminal region of Abeta42 oligomers may be able to prevent oligomer formation or structurally modify the assemblies to reduce their toxicity.Comment: Accepted for publication at Biophysical Journa

    Conformational dynamics and internal friction in homopolymer globules: equilibrium vs. non-equilibrium simulations

    Get PDF
    We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength Δ and the globule size N [subscript G] is observed. We find two distinct dynamical regimes: a liquid-like regime (for Δ Δ[subscript s] with slow internal dynamics. The cohesion strength Δ[subscript s] of this freezing transition depends on N G . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with Δ and scales extensive in N [subscript G] . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi
    • 

    corecore