86 research outputs found

    Assessment of fissionable material behaviour in fission chambers

    Get PDF
    A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation

    Microquasar models for 3EG J1828+0142 and 3EG J1735-1500

    Get PDF
    Microquasars are promising candidates to emit high-energy gamma-rays. Moreover, statistical studies show that variable EGRET sources at low galactic latitudes could be associated with the inner spiral arms. The variable nature and the location in the Galaxy of the high-mass microquasars, concentrated in the galactic plane and within 55 degrees from the galactic center, give to these objects the status of likely counterparts of the variable low-latitude EGRET sources. We consider in this work the two most variable EGRET sources at low-latitudes: 3EG J1828+0142 and 3EG J1735-1500, proposing a microquasar model to explain the EGRET data in consistency with the observations at lower energies (from radio frequencies to soft gamma-rays) within the EGRET error box.Comment: (1)Universitat de Barcelona, (2)Instituto Argentino de Radioastronomia (3) Facultad de Ciencias Astronomicas y Geofisicas (4)Lawrence Livermore National Laboratory 6 pages, 2 figures. Presented as a poster at the V Microquasar Workshop, Beijing, June 2004. Accepted for publication in the Chinese Journal of Astronomy & Astrophysic

    Open issues in gamma-ray bursts: polarimetry and dark GRBs

    Get PDF
    We review some open problems in the physics of afterglows, namely their polarization properties and the existence of dark/faint bursts. Polarization studies yield precious insights in the physical structure and dynamical evolution of GRB jets, revealing their magnetization properties and their energy profile. Polarimetric observations of GRB 020813 already allowed to exclude a homogeneous jet for this event. We then present observations of faint/dark bursts, showing that some of them may be obscured by dust, while others are possibly just intrinsically dim.Comment: 6 pages, 3 figures. Proceedings of the 4th Workshop "Gamma-Ray Bursts in the Afterglow Era", Roma, 2004 October 18-22, eds. L. Piro, L. Amati, S. Covino, and B. Gendre. Il Nuovo Cimento, in pres

    The frontier of darkness: the cases of GRB 040223, GRB 040422, GRB 040624

    Full text link
    Understanding the reasons for the faintness of the optical/near-infrared afterglows of the so-called dark bursts is essential to assess whether they form a subclass of GRBs, and hence for the use of GRBs in cosmology. With VLT and other ground-based telescopes, we searched for the afterglows of the INTEGRAL bursts GRB 040223, GRB 040422 and GRB 040624 in the first hours after the triggers. A detection of a faint afterglow and of the host galaxy in the K band was achieved for GRB 040422, while only upper limits were obtained for GRB 040223 and GRB 040624, although in the former case the X-ray afterglow was observed. A comparison with the magnitudes of a sample of afterglows clearly shows the faintness of these bursts, which are good examples of a population that an increasing usage of large diameter telescopes is beginning to unveil.Comment: 4 pages, 2 figures. To appear in the proceedings of the 16th Annual October Astrophysics Conference in Maryland "Gamma Ray Bursts in the Swift Era", eds. S. Holt, N. Gehrels & J. Nouse

    A search for counterparts to massive X-ray binaries using photometric catalogues

    Get PDF
    (abridged) INTEGRAL has discovered large numbers of new hard X-ray sources, many of which are believed to be high mass X-ray binaries. However, for a significant fraction, their counterparts remain unidentified. We explore the use of photometric catalogues to find optical counterparts to high mass X-ray binaries. Candidates were selected from 2MASS photometry by means of a reddening free Q parameter. Sufficiently bright candidates were spectroscopically observed. Many of the candidates selected turned out to be moderately reddened late A or early F stars, but our method is able to identify the counterpart to IGR J16207-5129, confirmed by a Chandra localisation. We classify this object as a B0 supergiant. In the field of AX J1820.5-1434, we find a mid or early B-type star, but we cannot confirm it as the counterpart. For AX J1700.2-4220, we do not find any suitable candidate within the ASCA error circle. We classify HD 153295, a marginal candidate to be the counterpart, as B0.5IVe, and find a distance compatible with membership in Sco OB1. We derive a spectral type B0IIIe for HD100199, previously identified as the counterpart to IGR J11305-6256. In the case of IGR J17091-3624, the object associated with a variable radio source in the field is a late F star. The procedure used is able to correctly identify OB stars and, in about one third of the cases, may lead to the localisation of the correct counterpart. However, the majority of INTEGRAL error circles do not contain any suitable optically visible counterpart. Deep infrared searches are going to be necessary in order to locate the counterparts to these sources.Comment: 10 pages, 6 figures; Accepted for publication in Astronomy & Astrophysics (Sept 25th

    The dark nature of GRB 051022 and its host galaxy

    Get PDF
    We present multiwavelength (X-ray/optical/near-infrared/millimetre) observations of GRB 051022 between 2.5 hours and ~1.15 yr after the event. It is the most intense gamma-ray burst (~ 10^-4 erg cm^-2) detected by HETE-2, with the exception of the nearby GRB 030329. Optical and near infrared observations did not detect the afterglow despite a strong afterglow at X-ray wavelengths. Millimetre observations at Plateau de Bure (PdB) detected a source and a flare, confirming the association of this event with a moderately bright (R = 21.5) galaxy. Spectroscopic observations of this galaxy show strong [O II], Hbeta and [O III] emission lines at a redshift of 0.809. The spectral energy distribution of the galaxy implies Av (rest frame) = 1.0 and a starburst occuring ~ 25 Myr ago, during which the star-forming-rate reached >= 25 Msun/yr. In conjunction with the spatial extent (~ 1'') it suggests a very luminous (Mv = - 21.8) blue compact galaxy, for which we also find with Z Zsun. The X-ray spectrum shows evidence of considerable absorption by neutral gas with NH, X-ray = 3.47(+0.48/-0.47) x 10^22 cm^-2 (rest frame). Absorption by dust in the host galaxy at z = 0.809 certainly cannot account for the non-detection of the optical afterglow, unless the dust-to-gas ratio is quite different than that seen in our Galaxy (i.e. large dust grains). It is likely that the afterglow of the dark GRB 051022 was extinguished along the line of sight by an obscured, dense star forming region in a molecular cloud within the parent host galaxy. This galaxy is different from most GRB hosts being brighter than L* by a factor of 3. We have also derived a SFR ~ 50 Msun/yr and predict that this host galaxy will be detected at sub-mm wavelengths.Comment: 7 Pages, 7 figures. Accepted in Astronomy and Astrophysic

    UVES/VLT high resolution spectroscopy of GRB 050730 afterglow: probing the features of the GRB environment

    Get PDF
    We analyze high resolution spectroscopic observations of the optical afterglow of GRB050730, obtained with UVES@VLT about hours after the GRB trigger. The spectrum shows that the ISM of the GRB host galaxy at z = 3.967 is complex, with at least five components contributing to the main absorption system. We detect strong CII*, SiII*, OI* and FeII* fine structure absorption lines associated to the second and third component. For the first three components we derive information on the relative distance from the site of the GRB explosion. Component 1, which has the highest redshift, does not present any fine structure nor low ionization lines; it only shows very high ionization features, such as CIV and OVI, suggesting that this component is very close to the GRB site. From the analysis of low and high ionization lines and fine structure lines, we find evidences that the distance of component 2 from the site of the GRB explosion is 10-100 times smaller than that of component 3. We evaluated the mean metallicity of the z=3.967 system obtaining values about 0.01 of the solar metallicity or less. However, this should not be taken as representative of the circumburst medium, since the main contribution to the hydrogen column density comes from the outer regions of the galaxy while that of the other elements presumably comes from the ISM closer to the GRB site. Furthermore, difficulties in evaluating dust depletion correction can modify significantly these values. The mean [C/Fe] ratio agrees well with that expected by single star-formation event models. Interestingly the [C/Fe] of component 2 is smaller than that of component 3, in agreement with GRB dust destruction scenarios, if component 2 is closer than component 3 to the GRB site.Comment: 11 pages, 15 postscript figures, accepted for pubblication in A&

    GRB 050904 at redshift 6.3: observations of the oldest cosmic explosion after the Big Bang

    Full text link
    We present optical and near-infrared observations of the afterglow of the gamma-ray burst GRB 050904. We derive a photometric redshift z = 6.3, estimated from the presence of the Lyman break falling between the I and J filters. This is by far the most distant GRB known to date. Its isotropic-equivalent energy is 3.4x10^53 erg in the rest-frame 110-1100 keV energy band. Despite the high redshift, both the prompt and the afterglow emission are not peculiar with respect to other GRBs. We find a break in the J-band light curve at t_b = 2.6 +- 1.0 d (observer frame). If we assume this is the jet break, we derive a beaming-corrected energy E_gamma = (4-12)x10^51 erg. This limit shows that GRB 050904 is consistent with the Amati and Ghirlanda relations. This detection is consistent with the expected number of GRBs at z > 6 and shows that GRBs are a powerful tool to study the star formation history up to very high redshift.Comment: 3 figures, 5 pages, accepted for publication in A&A Letters. One figure added, minor modifications. Full author list in the pape

    Unveiling the nature of INTEGRAL objects through optical spectroscopy. VIII. Identification of 44 newly detected hard X-ray sources

    Full text link
    (abridged) Hard X-ray surveys performed by the INTEGRAL satellite have discovered a conspicuous fraction (up to 30%) of unidentified objects among the detected sources. Here we continue our identification program by selecting probable optical candidates using positional cross-correlation with soft X-ray, radio, and/or optical archives, and performing optical spectroscopy on them. As a result, we identified or more accurately characterized 44 counterparts of INTEGRAL sources: 32 active galactic nuclei, with redshift 0.019 < z < 0.6058, 6 cataclysmic variables (CVs), 5 high-mass X-ray binaries (2 of which in the Small Magellanic Cloud), and 1 low-mass X-ray binary. This was achieved by using 7 telescopes of various sizes and archival data from two online spectroscopic surveys. The main physical parameters of these hard X-ray sources were also determined using the available multiwavelength information. AGNs are the most abundant population among hard X-ray objects, and our results confirm this tendency when optical spectroscopy is used as an identification tool. The deeper sensitivity of recent INTEGRAL surveys enables one to begin detecting hard X-ray emission above 20 keV from sources such as LINER-type AGNs and non-magnetic CVs.Comment: 22 pages, 14 figures, 6 tables, accepted for publication on A&A, main journa
    corecore