198 research outputs found
Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2
Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER) and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2), mutations in which underlie familial Alzheimer’s disease (FAD), promotes ER-mitochondria coupling only in the presence of mitofusin 2 (Mfn2). PS2 is not necessary for the antagonistic effect of Mfn2 on organelle coupling, although its abundance can tune it. The two proteins physically interact, whereas their homologues Mfn1 and PS1 are dispensable for this interplay. Moreover, PS2 mutants associated with FAD are more effective than the wild-type form in modulating ER-mitochondria tethering because their binding to Mfn2 in mitochondrial-associated membranes is favored. We propose a revised model for ER-mitochondria interaction to account for these findings and discuss possible implications for FAD pathogenesis
Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2
Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER) and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2), mutations in which underlie familial Alzheimer's disease (FAD), promotes ER-mitochondria coupling only in the presence of mitofusin 2 (Mfn2). PS2 is not necessary for the antagonistic effect of Mfn2 on organelle coupling, although its abundance can tune it. The two proteins physically interact, whereas their homologues Mfn1 and PS1 are dispensable for this interplay. Moreover, PS2 mutants associated with FAD are more effective than the wild-type form in modulating ER-mitochondria tethering because their binding to Mfn2 in mitochondria-associated membranes is favored. We propose a revised model for ER-mitochondria interaction to account for these findings and discuss possible implications for FAD pathogenesis
Defective Mitochondrial Pyruvate Flux Affects Cell Bioenergetics in Alzheimer's Disease-Related Models
Summary: Mitochondria are key organelles for brain health. Mitochondrial alterations have been reported in several neurodegenerative disorders, including Alzheimer's disease (AD), and the comprehension of the underlying mechanisms appears crucial to understand their relationship with the pathology. Using multiple genetic, pharmacological, imaging, and biochemical approaches, we demonstrate that, in different familial AD cell models, mitochondrial ATP synthesis is affected. The defect depends on reduced mitochondrial pyruvate oxidation, due to both lower Ca2+-mediated stimulation of the Krebs cycle and dampened mitochondrial pyruvate uptake. Importantly, this latter event is linked to glycogen-synthase-kinase-3β (GSK-3β) hyper-activation, leading, in turn, to impaired recruitment of hexokinase 1 (HK1) to mitochondria, destabilization of mitochondrial-pyruvate-carrier (MPC) complexes, and decreased MPC2 protein levels. Remarkably, pharmacological GSK-3β inhibition in AD cells rescues MPC2 expression and improves mitochondrial ATP synthesis and respiration. The defective mitochondrial bioenergetics influences glutamate-induced neuronal excitotoxicity, thus representing a possible target for future therapeutic interventions. : Mitochondria are key organelles for brain health. Rossi et al. show that, in different Alzheimer's disease cell models, lower mitochondrial Ca2+ signal and pyruvate uptake reduce ATP synthesis. GSK-3β hyper-activation contributes to the defect by impairing HK1-mitochondria association, decreasing MPC2 levels and destabilizing MPC complexes. Defective bioenergetics affects neuronal functionality. Keywords: Alzheimer's disease, presenilin, mitochondrial metabolism, bioenergetics, calcium homeostasis, pyruvate, mitochondrial pyruvate carrier, hexokinase 1, GSK-3
SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition
Contact sites are discrete areas of organelle proximity that coordinate essential physiological processes across membranes, including Ca2+ signaling, lipid biosynthesis, apoptosis, and autophagy. However, tools to easily image inter-organelle proximity over a range of distances in living cells and in vivo are lacking. Here we report a split-GFP-based contact site sensor (SPLICS) engineered to fluoresce when organelles are in proximity. Two SPLICS versions efficiently measured narrow (8\u201310 nm) and wide (40\u201350 nm) juxtapositions between endoplasmic reticulum and mitochondria, documenting the existence of at least two types of contact sites in human cells. Narrow and wide ER\u2013mitochondria contact sites responded differently to starvation, ER stress, mitochondrial shape modifications, and changes in the levels of modulators of ER\u2013mitochondria juxtaposition. SPLICS detected contact sites in soma and axons of D. rerio Rohon Beard (RB) sensory neurons in vivo, extending its use to analyses of organelle juxtaposition in the whole anim
po 032 displacement of hexokinase 2 from mitochondria induces mitochondrial ca2 overload and caspase independent cell death in cancer cells
Introduction Hexokinase 2 (HK2) phosphorylates glucose for starting its utilisation in glycolysis and pentose phosphate pathway. In many cancer cell types these processes are enhanced and HK2 expression is strongly induced and mainly localised to the outer mitochondrial membrane, where it also exerts an anti-apoptotic activity. Genetic ablation in mouse highlights HK2 importance in tumour formation. Therefore, HK2 is a good target for antineoplastic strategies, but HK2 inhibitors can have important side effects as they affect glucose metabolism. Here we have developed an antineoplastic strategy based on HK2 detachment from mitochondria in order to induce tumour cell death without inhibiting hexokinase enzymatic activity. Material and methods Peptide design and synthesis; hexokinase enzymatic activity assays. Measurements of mitochondrial membrane potential, intracellular Ca2+ levels, cell death and in vitro and in vivo tumorigenic assays on human and mouse cancer cell models (CT26 colon cancer cells, 4 T1 breast cancer cells, HeLa cervix carcinoma cells and primary human B-CLL cells). Results and discussions We have observed that in cancer cells HK2 locates at contact sites between mitochondria and endoplasmic reticulum called MAMs (mitochondria-associated membranes). We could selectively detach HK2 from MAMs by using a peptide that does not perturb hexokinase enzymatic activity. This treatment rapidly induces opening of the Inositol-3-Phospate-Receptor and the ensuing Ca2+ transfer from endoplasmic reticulum to mitochondria. As a consequence, a Ca2+ overload occurs in mitochondria, leading to permeability transition pore opening, mitochondrial membrane depolarization and apoptosis in a caspase-independent way. Peptide administration reduces allografic growth of breast and colon cancer cells without any noxious effect on healthy tissues, and elicits death of B-cell chronic lymphocytic leukaemia (B-CLL) cells freshly obtained by patients and in vivo. Conclusion We have reported that HK2 locates in MAMs of cancer cells, where it acts as an important player in the control of their survival. Targeting HK2 with a peptide-based strategy constitutes a novel and promising anti-neoplastic approach
Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation
The cytosol-facing membranes of cellular organelles contain proteins that enable signal transduction, regulation of morphology and trafficking, protein import and export, and other specialized processes. Discovery of these proteins by traditional biochemical fractionation can be plagued with contaminants and loss of key components. Using peroxidase-mediated proximity biotinylation, we captured and identified endogenous proteins on the outer mitochondrial membrane (OMM) and endoplasmic reticulum membrane (ERM) of living human fibroblasts. The proteomes of 137 and 634 proteins, respectively, are highly specific and highlight 94 potentially novel mitochondrial or ER proteins. Dataset intersection identified protein candidates potentially localized to mitochondria-ER contact sites. We found that one candidate, the tail-anchored, PDZ-domain-containing OMM protein SYNJ2BP, dramatically increases mitochondrial contacts with rough ER when overexpressed. Immunoprecipitation-mass spectrometry identified ribosome-binding protein 1 (RRBP1) as SYNJ2BP’s ERM binding partner. Our results highlight the power of proximity biotinylation to yield insights into the molecular composition and function of intracellular membranes.United States. National Institutes of Health (R01 CA186568)United States. National Institutes of Health (R01 GM077465
A membrane-inserted structural model of the yeast mitofusin Fzo1
Mitofusins are large transmembrane GTPases of the dynamin-related protein family, and are required for the tethering and fusion of mitochondrial outer membranes. Their full-length structures remain unknown, which is a limiting factor in the study of outer membrane fusion. We investigated the structure and dynamics of the yeast mitofusin Fzo1 through a hybrid computational and experimental approach, combining molecular modelling and all-atom molecular dynamics simulations in a lipid bilayer with site-directed mutagenesis and in vivo functional assays. The predicted architecture of Fzo1 improves upon the current domain annotation, with a precise description of the helical spans linked by flexible hinges, which are likely of functional significance. In vivo site-directed mutagenesis validates salient aspects of this model, notably, the long-distance contacts and residues participating in hinges. GDP is predicted to interact with Fzo1 through the G1 and G4 motifs of the GTPase domain. The model reveals structural determinants critical for protein function, including regions that may be involved in GTPase domain-dependent rearrangements
A Bi-fluorescence complementation system to detect associations between the Endoplasmic reticulum and mitochondria
Abstract Close contacts between the endoplasmic reticulum membrane and the mitochondrial outer membrane facilitate efficient transfer of lipids between the organelles and coordinate Ca2+ signalling and stress responses. Changes to this coupling is associated with a number of metabolic disorders and neurodegenerative diseases including Alzheimer’s, Parkinson’s and motor neuron disease. The distance between the two membranes at regions of close apposition is below the resolution of conventional light microscopy, which makes analysis of these interactions challenging. Here we describe a new bifluorescence complementation (BiFC) method that labels a subset of ER-mitochondrial associations in fixed and living cells. The total number of ER-mitochondria associations detected by this approach increases in response to tunicamycin-induced ER stress, serum deprivation or reduced levels of mitofusin 2 (MFN2). This method will facilitate the analysis of dynamic interactions between the ER and mitochondrial membranes
Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling
Background: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases.
Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have
set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential.
Results: Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and
identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose
response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in
neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not
affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that
luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased
mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely
contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly,
we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels
inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin
treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans
expressing an expanded polyglutamine tract of the huntingtin protein.
Conclusion: We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we
describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with
potential therapeutic validity for treatment of a variety of human diseases
- …