245 research outputs found

    Phylogenetic evidence for extensive lateral acquisition of cellular genes by Nucleocytoplasmic large DNA viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleo-Cytoplasmic Large DNA viruses (NCLDV), a diverse group that infects a wide range of eukaryotic hosts, exhibit a large heterogeneity in genome size (between 100 kb and 1.2 Mb) but have been suggested to form a monophyletic group on the basis of a small subset of approximately 30 conserved genes. NCLDV were proposed to have evolved by simplification from cellular organism although some of the giant NCLDV have clearly grown by gene accretion from a bacterial origin.</p> <p>Results</p> <p>We demonstrate here that many NCLDV lineages appear to have undergone frequent gene exchange in two different ways. Viruses which infect protists directly (Mimivirus) or algae which exist as intracellular protists symbionts (Phycodnaviruses) acquire genes from a bacterial source. Metazoan viruses such as the Poxviruses show a predominant acquisition of host genes. In both cases, the laterally acquired genes show a strong tendency to be positioned at the tip of the genome. Surprisingly, several core genes believed to be ancestral in the family appear to have undergone lateral gene transfers, suggesting that the NCLDV ancestor might have had a smaller genome than previously believed. Moreover, our data show that the larger the genome, the higher is the number of laterally acquired genes. This pattern is incompatible with a genome reduction from a cellular ancestor.</p> <p>Conclusion</p> <p>We propose that the NCLDV viruses have evolved by significant growth of a simple DNA virus by gene acquisition from cellular sources.</p

    Class A ÎČ -Lactamases as Versatile Scaffolds to Create Hybrid Enzymes: Applications from Basic Research to Medicine

    Get PDF
    Designing hybrid proteins is a major aspect of protein engineering and covers a very wide range of applications frombasic research to medical applications. This review focuses on the use of class A -lactamases as versatile scaffolds to design hybrid enzymes (referred to as -lactamase hybrid proteins, BHPs) in which an exogenous peptide, protein or fragment thereof is inserted at various permissive positions.We discuss how BHPs can be specifically designed to create bifunctional proteins, to produce and to characterize proteins that are otherwise difficult to express, to determine the epitope of specific antibodies, to generate antibodies against nonimmunogenic epitopes, and to better understand the structure/function relationship of proteins.Peer reviewe

    Advantages and drawbacks of nanospray for studying noncovalent protein-DNA complexes by mass spectrometry

    Full text link
    The noncovalent complexes between the BlaI protein dimer (wild-type and GM2 mutant) and its double-stranded DNA operator were studied by nanospray mass spectrometry and tandem mass spectrometry (MS/MS). Reproducibility problems in the nanospray single-stage mass spectra are emphasized. The relative intensities depend greatly on the shape of the capillary tip and on the capillary-cone distance. This results in difficulties in assessing the relative stabilities of the complexes simply from MS' spectra of protein-DNA mixtures. Competition experiments using MS/MS are a better approach to determine relative binding affinities. A competition between histidine-tagged BlaIWT (BlaIWTHis) and the GM2 mutant revealed that the two proteins have similar affinities for the DNA operator, and that they co-dimerize to form heterocomplexes. The low sample consumption of nanospray allows MS/MS spectra to be recorded at different collision energies for different charge states with 1 muL of sample. The MS/MS experiments on the dimers reveal that the GM2 dimer is more kinetically stable in the gas phase than the wild-type dimer. The MS/MS experiments on the complexes shows that the two proteins require the same collision energy to dissociate from the complex. This indicates that the rate-limiting step in the monomer loss from the protein-DNA complex arises from the breaking of the protein-DNA interface rather than the protein-protein interface. The dissociation of the protein-DNA complex proceeds by the loss of a highly charged monomer (carrying about two-thirds of the total charge and one-third of the total mass). MS/MS experiments on a heterocomplex also show that the two proteins BlaIWTHis and BlaIGM2 have slightly different charge distributions in the fragments. This emphasizes the need for better understanding the dissociation mechanisms of biomolecular complexes

    Evidence for diversifying selection of genetic regions of encoding putative collagen-like host-adhesive fibers in Pasteuria penetrans

    Get PDF
    © FEMS 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Pasteuria spp. belong to a group of genetically diverse endospore-forming bacteria (phylum: Firmicutes) that are known to parasitize plant-parasitic nematodes and water fleas (Daphnia spp.). Collagen-like fibres form the nap on the surface of endospores and the genes encoding these sequences have been hypothesised to be involved in the adhesion of the endospores of Pasteuria spp. to their hosts. We report a group of 17 unique collagen-like genes putatively encoded by Pasteuria penetrans (strain: Res148) that formed five different phylogenetic clusters and suggest that collagen-like proteins are an important source of genetic diversity in animal pathogenic Firmicutes including Pasteuria. Additionally, and unexpectedly, we identified a putative collagen-like sequence which had a very different sequence structure to the other collagen-like proteins but was similar to the protein sequences in Megaviruses that are involved in host-parasite interactions. We, therefore, suggest that these diverse endospore surface proteins in Pasteuria are involved in biological functions, such as cellular adhesion; however, they are not of monophyletic origin and were possibly obtained de novo by mutation or possibly through selection acting upon several historic horizontal gene transfer events.Peer reviewedFinal Published versio

    Defining Life: The Virus Viewpoint

    Get PDF
    Are viruses alive? Until very recently, answering this question was often negative and viruses were not considered in discussions on the origin and definition of life. This situation is rapidly changing, following several discoveries that have modified our vision of viruses. It has been recognized that viruses have played (and still play) a major innovative role in the evolution of cellular organisms. New definitions of viruses have been proposed and their position in the universal tree of life is actively discussed. Viruses are no more confused with their virions, but can be viewed as complex living entities that transform the infected cell into a novel organism—the virus—producing virions. I suggest here to define life (an historical process) as the mode of existence of ribosome encoding organisms (cells) and capsid encoding organisms (viruses) and their ancestors. I propose to define an organism as an ensemble of integrated organs (molecular or cellular) producing individuals evolving through natural selection. The origin of life on our planet would correspond to the establishment of the first organism corresponding to this definition

    PhEVER: a database for the global exploration of virus–host evolutionary relationships

    Get PDF
    Fast viral adaptation and the implication of this rapid evolution in the emergence of several new infectious diseases have turned this issue into a major challenge for various research domains. Indeed, viruses are involved in the development of a wide range of pathologies and understanding how viruses and host cells interact in the context of adaptation remains an open question. In order to provide insights into the complex interactions between viruses and their host organisms and namely in the acquisition of novel functions through exchanges of genetic material, we developed the PhEVER database. This database aims at providing accurate evolutionary and phylogenetic information to analyse the nature of virus–virus and virus–host lateral gene transfers. PhEVER (http://pbil.univ-lyon1.fr/databases/phever) is a unique database of homologous families both (i) between sequences from different viruses and (ii) between viral sequences and sequences from cellular organisms. PhEVER integrates extensive data from up-to-date completely sequenced genomes (2426 non-redundant viral genomes, 1007 non-redundant prokaryotic genomes, 43 eukaryotic genomes ranging from plants to vertebrates) and offers a clustering of proteins into homologous families containing at least one viral sequences, as well as alignments and phylogenies for each of these families. Public access to PhEVER is available through its webpage and through all dedicated ACNUC retrieval systems

    Nucleus-encoded plastid sigma factor SIG3 transcribes specifically the psbN gene in plastids

    Get PDF
    We have investigated the function of one of the six plastid sigma-like transcription factors, sigma 3 (SIG3), by analysing two different Arabidopsis T-DNA insertion lines having disrupted SIG3 genes. Hybridization of wild-type and sig3 plant RNA to a plastid specific microarray revealed a strong reduction of the plastid psbN mRNA. The microarray result has been confirmed by northern blot analysis. The SIG3-specific promoter region has been localized on the DNA by primer extension and mRNA capping experiments. Results suggest tight regulation of psbN gene expression by a SIG3-PEP holoenzyme. The psbN gene is localized on the opposite strand of the psbB operon, between the psbT and psbH genes, and the SIG3-dependent psbN transcription produces antisense RNA to the psbT–psbH intergenic region. We show that this antisense RNA is not limited to the intergenic region, i.e. it does not terminate at the end of the psbN gene but extends as antisense transcript to cover the whole psbT coding region. Thus, by specific transcription initiation at the psbN gene promoter, SIG3-PEP holoenzyme could also influence the expression of the psbB operon by producing psbT antisense RNA

    Mobile Regulatory Cassettes Mediate Modular Shuffling in T4-Type Phage Genomes

    Get PDF
    Coliphage phi1, which was isolated for phage therapy in the Republic of Georgia, is closely related to the T-like myovirus RB49. The ∌275 open reading frames encoded by each phage have an average level of amino acid identity of 95.8%. RB49 lacks 7 phi1 genes while 10 phi1 genes are missing from RB49. Most of these unique genes encode functions without known homologs. Many of the insertion, deletion, and replacement events that distinguish the two phages are in the hyperplastic regions (HPRs) of their genomes. The HPRs are rich in both nonessential genes and small regulatory cassettes (promoterearly stem-loops [PeSLs]) composed of strong σ70-like promoters and stem-loop structures, which are effective transcription terminators. Modular shuffling mediated by recombination between PeSLs has caused much of the sequence divergence between RB49 and phi1. We show that exchanges between nearby PeSLs can also create small circular DNAs that are apparently encapsidated by the virus. Such PeSL “mini-circles” may be important vectors for horizontal gene transfer
    • 

    corecore