110 research outputs found

    Thermal expansion of the magnetically ordering intermetallics RTMg (R = Eu, Gd and T = Ag, Au)

    Full text link
    We report measurements of the thermal expansion for two Eu+2^{+2}- and two Gd+3^{+3}-based intermetallics which exhibit ferro- or antiferromagnetic phase transitions. These materials show sharp positive (EuAgMg and GdAuMg) and negative (EuAuMg and GdAgMg) peaks in the temperature dependence of the thermal expansion coefficient α\alpha which become smeared and/or displaced in an external magnetic field. Together with specific heat data we determine the initial pressure dependences of the transition temperatures at ambient pressure using the Ehrenfest or Clausius-Clapeyron relation. We find large pressure dependences indicating strong spin-phonon coupling, in particular for GdAgMg and EuAuMg where a quantum phase transition might be reached at moderate pressures of a few GPa.Comment: 6 pages, 3 figure

    Electronic structure of REREAuMg and REREAgMg (RERE = Eu, Gd, Yb)

    Full text link
    We have investigated the electronic structure of the equiatomic EuAuMg, GdAuMg, YbAuMg and GdAgMg intermetallics using x-ray photoelectron spectroscopy. The spectra revealed that the Yb and Eu are divalent while the Gd is trivalent. The spectral weight in the vicinity of the Fermi level is dominated by the mix of Mg ss, Au/Ag spsp and RERE spdspd bands, and not by the RERE 4f4f. We also found that the Au and Ag dd bands are extraordinarily narrow, as if the noble metal atoms were impurities submerged in a low density spsp metal host. The experimental results were compared with band structure calculations, and we found good agreement provided that the spin-orbit interaction in the Au an Ag dd bands is included and correlation effects in an open 4f4f shell are accounted for using the local density approximation + Hubbard UU scheme. Nevertheless, limitations of such a mean-field scheme to explain excitation spectra are also evident.Comment: 4 pages, 3 figures, Brief Repor

    A Medium Resolution Near-Infrared Spectral Atlas of O and Early B Stars

    Full text link
    We present intermediate resolution (R ~ 8,000 - 12,000) high signal-to-noise H- and K-band spectroscopy of a sample of 37 optically visible stars, ranging in spectral type from O3 to B3 and representing most luminosity classes. Spectra of this quality can be used to constrain the temperature, luminosity and general wind properties of OB stars, when used in conjunction with sophisticated atmospheric model codes. Most important is the need for moderately high resolutions (R > 5000) and very high signal-to-noise (S/N > 150) spectra for a meaningful profile analysis. When using near-infrared spectra for a classification system, moderately high signal-to-noise (S/N ~ 100) is still required, though the resolution can be relaxed to just a thousand or two. In the appendix we provide a set of very high quality near-infrared spectra of Brackett lines in six early-A dwarfs. These can be used to aid in the modeling and removal of such lines when early-A dwarfs are used for telluric spectroscopic standards.Comment: 12 pages, 3 tables, 14 figures. AASTex preprint style. To appear in ApJS, November 2005. All spectra are available by contacting M.M. Hanso

    Magnetoresistance, specific heat and magnetocaloric effect of equiatomic rare-earth transition-metal magnesium compounds

    Full text link
    We present a study of the magnetoresistance, the specific heat and the magnetocaloric effect of equiatomic RETRETMg intermetallics with RE=LaRE = {\rm La}, Eu, Gd, Yb and T=AgT = {\rm Ag}, Au and of GdAuIn. Depending on the composition these compounds are paramagnetic (RE=LaRE = {\rm La}, Yb) or they order either ferro- or antiferromagnetically with transition temperatures ranging from about 13 to 81 K. All of them are metallic, but the resistivity varies over 3 orders of magnitude. The magnetic order causes a strong decrease of the resistivity and around the ordering temperature we find pronounced magnetoresistance effects. The magnetic ordering also leads to well-defined anomalies in the specific heat. An analysis of the entropy change leads to the conclusions that generally the magnetic transition can be described by an ordering of localized S=7/2S=7/2 moments arising from the half-filled 4f74f^7 shells of Eu2+^{2+} or Gd3+^{3+}. However, for GdAgMg we find clear evidence for two phase transitions indicating that the magnetic ordering sets in partially below about 125 K and is completed via an almost first-order transition at 39 K. The magnetocaloric effect is weak for the antiferromagnets and rather pronounced for the ferromagnets for low magnetic fields around the zero-field Curie temperature.Comment: 12 pages, 7 figures include

    Antiferromagnetic ordering in heavy fermion system Ce2Au2Cd

    Full text link
    La2Au2Cd and Ce2Au2Cd were prepared from the elements by reactions in sealed tantalum tubes in a water-cooled sample chamber of an induction furnace. These intermetallics crystallize with the tetragonal Mo2FeB2 type, space group P4/mbm. While La2Au2Cd is Pauli paramagnetic, Ce2Au2Cd shows Curie-Weiss behaviour above 100 K with an experimental magnetic moment of 2.41(2) muB/Ce atom, indicating trivalent cerium. Antiferromagnetic ordering is detected for Ce2Au2Cd at 5.01(2) K and magnetization measurements reveal a metamagnetic transition at 3 K at a critical field of around 20 kOe with a saturation moment of 1.50(2)muB/Ce atom at 80 kOe. The low-temperature heat capacity properties characterize Ce2Au2Cd as a heavy fermion material with an electronic specific heat coefficient (gamma) = 807(5) mJ/mol K2 as compared to La2Au2Cd with gamma = 6(5) mJ/mol K2.Comment: Accepted for publication in Phys. Rev.

    Unintentional high density p-type modulation doping of a GaAs/AlAs core-multi-shell nanowire

    Get PDF
    Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of considerable technological importance but remains a challenge due to the amphoteric behavior of the dopant atoms. Here we show that placing a narrow GaAs quantum well in the AlAs shell effectively getters residual carbon acceptors leading to an \emph{unintentional} p-type doping. Magneto-optical studies of such a GaAs/AlAs core multi-shell NW reveal quantum confined emission. Theoretical calculations of NW electronic structure confirm quantum confinement of carriers at the core/shell interface due to the presence of ionized carbon acceptors in the 1~nm GaAs layer in the shell. Micro-photoluminescence in high magnetic field shows a clear signature of avoided crossings of the n=0n=0 Landau level emission line with the n=2n=2 Landau level TO phonon replica. The coupling is caused by the resonant hole-phonon interaction, which points to a large 2D hole density in the structure.Comment: just published in Nano Letters (http://pubs.acs.org/doi/full/10.1021/nl500818k

    Enhanced Long-Path Electrical Conduction in ZnO Nanowire Array Devices Grown via Defect-Driven Nucleation

    Get PDF
    Vertical arrays of nanostructures have been widely used as major components in some of the most ground-breaking modern research-based devices, and ZnO nanowires have received particular attention because of their favorable electronic properties. Using a local multiprobe technique to measure the properties of individual ZnO nanowires in vertical arrays, we show for the first time that for metal-catalyzed ZnO nanowire growth the electrical contribution of individual wires to a device is highly dependent on the fate of the catalyst nanoparticle during growth. To overcome the limitations of metal-catalyzed growth, nanowires grown from a defect-driven nucleation process are shown to provide high-quality device structures with excellent long-path electrical conduction
    corecore