30 research outputs found

    Деловая карьера и ее развитие в организации в ООО "Газпром переработка" Филиал Сургутского ЗСК

    Get PDF
    Деловая карьера специалиста на предприятии, разработка рекомендации по совершенствованию в ООО " Газпром переработка" Филиал Сургутского ЗСК, мероприятия по совершенствованию управления деловой карьерой в ООО " Газпром переработка" Филиал Сургутского ЗСК имеют положительный эффект и могут быть рекомендованы для дальнейшего внедренияBusiness career of a specialist at the enterprise,develop recommendations for the improvement of LLC "Gazprom processing" branch of the Surgut condensate stabilization plant,measures to improve the management of business career in OOO "Gazprom pererabotka" Branch, Surgut ZSK have a positive effect and can be recommended for further implementatio

    An Interactive Bayesian Geostatistical Inverse Protocol for Hydraulic Tomography

    Get PDF
    Hydraulic tomography is a powerful technique for characterizing heterogeneous hydrogeologic parameters. An explicit trade-off between characterization based on measurement misfit and subjective characterization using prior information is presented. We apply a Bayesian geostatistical inverse approach that is well suited to accommodate a flexible model with the level of complexity driven by the data and explicitly considering uncertainty. Prior information is incorporated through the selection of a parameter covariance model characterizing continuity and providing stability. Often, discontinuities in the parameter field, typically caused by geologic contacts between contrasting lithologic units, necessitate subdivision into zones across which there is no correlation among hydraulic parameters. We propose an interactive protocol in which zonation candidates are implied from the data and are evaluated using cross validation and expert knowledge. Uncertainty introduced by limited knowledge of dynamic regional conditions is mitigated by using drawdown rather than native head values. An adjoint state formulation of MODFLOW-2000 is used to calculate sensitivities which are used both for the solution to the inverse problem and to guide protocol decisions. The protocol is tested using synthetic two-dimensional steady state examples in which the wells are located at the edge of the region of interest

    A pattern-search-based inverse method

    Full text link
    Uncertainty in model predictions is caused to a large extent by the uncertainty in model parameters, while the identification of model parameters is demanding because of the inherent heterogeneity of the aquifer. A variety of inverse methods has been proposed for parameter identification. In this paper we present a novel inverse method to constrain the model parameters (hydraulic conductivities) to the observed state data (hydraulic heads). In the method proposed we build a conditioning pattern consisting of simulated model parameters and observed flow data. The unknown parameter values are simulated by pattern searching through an ensemble of realizations rather than optimizing an objective function. The model parameters do not necessarily follow a multi-Gaussian distribution, and the nonlinear relationship between the parameter and the response is captured by the multipoint pattern matching. The algorithm is evaluated in two synthetic bimodal aquifers. The proposed method is able to reproduce the main structure of the reference fields, and the performance of the updated model in predicting flow and transport is improved compared with that of the prior model.The authors gratefully acknowledge the financial support from the Ministry of Science and Innovation, project CGL2011-23295. The first author also acknowledges the scholarship provided by the China Scholarship Council (CSC [2007] 3020). The authors would like to thank Gregoire Mariethoz (University of New South Wales) and Philippe Renard (University of Neuchatel) for their enthusiastic help in answering questions about the direct sampling algorithm. Gregoire Mariethoz and two anonymous reviewers are also thanked for their comments during the reviewing process, which helped improving the final paper.Zhou ., H.; Gómez-Hernández, JJ.; Li ., L. (2012). A pattern-search-based inverse method. Water Resources Research. 48(3):1-17. https://doi.org/10.1029/2011WR011195S117483Alcolea, A., & Renard, P. (2010). Blocking Moving Window algorithm: Conditioning multiple-point simulations to hydrogeological data. Water Resources Research, 46(8). doi:10.1029/2009wr007943Alcolea, A., Carrera, J., & Medina, A. (2006). Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Advances in Water Resources, 29(11), 1678-1689. doi:10.1016/j.advwatres.2005.12.009Arpat, G. B., & Caers, J. (2007). Conditional Simulation with Patterns. Mathematical Geology, 39(2), 177-203. doi:10.1007/s11004-006-9075-3Caers , J. 2002 Geostatistical history matching under training-image based geological model constraintsCaers, J. (2003). Efficient gradual deformation using a streamline-based proxy method. Journal of Petroleum Science and Engineering, 39(1-2), 57-83. doi:10.1016/s0920-4105(03)00040-8Caers, J., & Hoffman, T. (2006). The Probability Perturbation Method: A New Look at Bayesian Inverse Modeling. Mathematical Geology, 38(1), 81-100. doi:10.1007/s11004-005-9005-9Capilla, J. E., & Llopis-Albert, C. (2009). Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. Journal of Hydrology, 371(1-4), 66-74. doi:10.1016/j.jhydrol.2009.03.015Carrera, J., & Neuman, S. P. (1986). Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information. Water Resources Research, 22(2), 199-210. doi:10.1029/wr022i002p00199Chen, Y., & Zhang, D. (2006). Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Advances in Water Resources, 29(8), 1107-1122. doi:10.1016/j.advwatres.2005.09.007Christiansen, L., Binning, P. J., Rosbjerg, D., Andersen, O. B., & Bauer-Gottwein, P. (2011). Using time-lapse gravity for groundwater model calibration: An application to alluvial aquifer storage. Water Resources Research, 47(6). doi:10.1029/2010wr009859De Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., & Violette, S. (2005). Dealing with spatial heterogeneity. Hydrogeology Journal, 13(1), 161-183. doi:10.1007/s10040-004-0432-3Deutsch, C. V., & Tran, T. T. (2002). FLUVSIM: a program for object-based stochastic modeling of fluvial depositional systems. Computers & Geosciences, 28(4), 525-535. doi:10.1016/s0098-3004(01)00075-9Dubuisson, M.-P., & Jain, A. K. (s. f.). A modified Hausdorff distance for object matching. Proceedings of 12th International Conference on Pattern Recognition. doi:10.1109/icpr.1994.576361Emsellem, Y., & De Marsily, G. (1971). An Automatic Solution for the Inverse Problem. Water Resources Research, 7(5), 1264-1283. doi:10.1029/wr007i005p01264Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53(4), 343-367. doi:10.1007/s10236-003-0036-9Falivene, O., Cabello, P., Arbués, P., Muñoz, J. A., & Cabrera, L. (2009). A geostatistical algorithm to reproduce lateral gradual facies transitions: Description and implementation. Computers & Geosciences, 35(8), 1642-1651. doi:10.1016/j.cageo.2008.12.003Fernàndez-Garcia, D., Illangasekare, T. H., & Rajaram, H. (2005). Differences in the scale dependence of dispersivity and retardation factors estimated from forced-gradient and uniform flow tracer tests in three-dimensional physically and chemically heterogeneous porous media. Water Resources Research, 41(3). doi:10.1029/2004wr003125Feyen, L., & Caers, J. (2006). Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations. Advances in Water Resources, 29(6), 912-929. doi:10.1016/j.advwatres.2005.08.002Fu, J., & Gómez-Hernández, J. J. (2008). A Blocking Markov Chain Monte Carlo Method for Inverse Stochastic Hydrogeological Modeling. Mathematical Geosciences, 41(2), 105-128. doi:10.1007/s11004-008-9206-0Jaime Gómez-Hernánez, J., Sahuquillo, A., & Capilla, J. (1997). Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory. Journal of Hydrology, 203(1-4), 162-174. doi:10.1016/s0022-1694(97)00098-xGuardiano, F. B., & Srivastava, R. M. (1993). Multivariate Geostatistics: Beyond Bivariate Moments. Geostatistics Tróia ’92, 133-144. doi:10.1007/978-94-011-1739-5_12Harbaugh , A. W. E. R. Banta M. C. Hill M. G. McDonald 2000 MODFLOW-2000, the U.S. Geological Survey modular ground-water model-User guide to modularization concepts and the ground-water flow process Reston, Va.Hendricks Franssen, H. J., & Kinzelbach, W. (2008). Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research, 44(9). doi:10.1029/2007wr006505Franssen, H.-J. H., Gómez-Hernández, J., & Sahuquillo, A. (2003). Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data. Journal of Hydrology, 281(4), 281-295. doi:10.1016/s0022-1694(03)00191-4Henrion, V., Caumon, G., & Cherpeau, N. (2010). ODSIM: An Object-Distance Simulation Method for Conditioning Complex Natural Structures. Mathematical Geosciences, 42(8), 911-924. doi:10.1007/s11004-010-9299-0Hoeksema, R. J., & Kitanidis, P. K. (1984). An Application of the Geostatistical Approach to the Inverse Problem in Two-Dimensional Groundwater Modeling. Water Resources Research, 20(7), 1003-1020. doi:10.1029/wr020i007p01003Hoeksema, R. J., & Kitanidis, P. K. (1985). Analysis of the Spatial Structure of Properties of Selected Aquifers. Water Resources Research, 21(4), 563-572. doi:10.1029/wr021i004p00563Hu, L. Y. (2000). Mathematical Geology, 32(1), 87-108. doi:10.1023/a:1007506918588Hu, L. Y., & Chugunova, T. (2008). Multiple-point geostatistics for modeling subsurface heterogeneity: A comprehensive review. Water Resources Research, 44(11). doi:10.1029/2008wr006993Huysmans, M., & Dassargues, A. (2009). Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium). Hydrogeology Journal, 17(8), 1901-1911. doi:10.1007/s10040-009-0495-2Jafarpour, B., & Khodabakhshi, M. (2011). A Probability Conditioning Method (PCM) for Nonlinear Flow Data Integration into Multipoint Statistical Facies Simulation. Mathematical Geosciences, 43(2), 133-164. doi:10.1007/s11004-011-9316-yJournel, A., & Zhang, T. (2006). The Necessity of a Multiple-Point Prior Model. Mathematical Geology, 38(5), 591-610. doi:10.1007/s11004-006-9031-2Kerrou, J., Renard, P., Hendricks Franssen, H.-J., & Lunati, I. (2008). Issues in characterizing heterogeneity and connectivity in non-multiGaussian media. Advances in Water Resources, 31(1), 147-159. doi:10.1016/j.advwatres.2007.07.002Kwa, Franz, M. O., & Scholkopf, B. (2005). Iterative kernel principal component analysis for image modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9), 1351-1366. doi:10.1109/tpami.2005.181Kitanidis, P. K. (2007). On stochastic inverse modeling. Geophysical Monograph Series, 19-30. doi:10.1029/171gm04Kitanidis, P. K., & Vomvoris, E. G. (1983). A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resources Research, 19(3), 677-690. doi:10.1029/wr019i003p00677Li, L., Zhou, H., Hendricks Franssen, H. J., & Gómez-Hernández, J. J. (2011). Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter. Hydrology and Earth System Sciences Discussions, 8(4), 6749-6788. doi:10.5194/hessd-8-6749-2011Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Advances in Water Resources, 34(4), 478-489. doi:10.1016/j.advwatres.2011.01.001Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). Journal of Hydrology, 404(3-4), 278-293. doi:10.1016/j.jhydrol.2011.05.001Mariethoz, G., Renard, P., & Straubhaar, J. (2010). The Direct Sampling method to perform multiple-point geostatistical simulations. Water Resources Research, 46(11). doi:10.1029/2008wr007621Mariethoz, G., Renard, P., & Caers, J. (2010). Bayesian inverse problem and optimization with iterative spatial resampling. Water Resources Research, 46(11). doi:10.1029/2010wr009274Neuman, S. P. (1973). Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty. Water Resources Research, 9(4), 1006-1021. doi:10.1029/wr009i004p01006Oliver, D. S., Cunha, L. B., & Reynolds, A. C. (1997). Markov chain Monte Carlo methods for conditioning a permeability field to pressure data. Mathematical Geology, 29(1), 61-91. doi:10.1007/bf02769620RamaRao, B. S., LaVenue, A. M., De Marsily, G., & Marietta, M. G. (1995). Pilot Point Methodology for Automated Calibration of an Ensemble of conditionally Simulated Transmissivity Fields: 1. Theory and Computational Experiments. Water Resources Research, 31(3), 475-493. doi:10.1029/94wr02258Rubin, Y., Chen, X., Murakami, H., & Hahn, M. (2010). A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields. Water Resources Research, 46(10). doi:10.1029/2009wr008799Strebelle, S. (2002). Mathematical Geology, 34(1), 1-21. doi:10.1023/a:1014009426274Suzuki, S., & Caers, J. (2008). A Distance-based Prior Model Parameterization for Constraining Solutions of Spatial Inverse Problems. Mathematical Geosciences, 40(4), 445-469. doi:10.1007/s11004-008-9154-8Wen, X. H., Capilla, J. E., Deutsch, C. V., Gómez-Hernández, J. J., & Cullick, A. S. (1999). A program to create permeability fields that honor single-phase flow rate and pressure data. Computers & Geosciences, 25(3), 217-230. doi:10.1016/s0098-3004(98)00126-5Zhang, T., Switzer, P., & Journel, A. (2006). Filter-Based Classification of Training Image Patterns for Spatial Simulation. Mathematical Geology, 38(1), 63-80. doi:10.1007/s11004-005-9004-xZhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., & Li, L. (2011). An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Advances in Water Resources, 34(7), 844-864. doi:10.1016/j.advwatres.2011.04.014Zhou, H., Li, L., Hendricks Franssen, H.-J., & Gómez-Hernández, J. J. (2011). Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter. Mathematical Geosciences, 44(2), 169-185. doi:10.1007/s11004-011-9372-

    Fas-Induced Apoptosis of Renal Cell Carcinoma is Mediated by Apoptosis Signal-Regulating Kinase 1 via Mitochondrial Damage-Dependent Caspase-8 Activation

    No full text
    Renal cell carcinoma (RCC) is a prototype of a chemo refractory tumour. It remains the most lethal of the common urologic cancers and is highly resistant to conventional therapy. Here, we confirmed the efficiency of anti-Fas monoclonal antibody (CH11) as alternative therapeutic approach for the treatment of RCC and investigated the molecular mechanism(s), whereby CH11 induces apoptosis of RCC cells. The present study shows an essential role for apoptosis signal-regulating kinase 1 (ASK1), together with both c-jun-N-terminal kinase (JNK) and p38 pathways, and caspase-8 in this process. Furthermore, CH11-dependent induction of the ASK1–JNK/p38 pathways was found to activate the transcription factors AP-1 and ATF-2, and FADD-caspase-8-Bid signalling, resulting in the translocation of both Bax and Bak proteins, and subsequently mitochondrial dysregulation that is characterized by the loss of mitochondrial membrane potential (ΔΨm), cytochrome c release and cleavage of caspase-9, caspase-3 and PARP. Thus, the described molecular mechanisms of CH11-induced apoptosis suggest the reliability of Fas activation as an alternative therapeutic approach for the treatment of patients with advanced renal cell carcinoma

    Addition of Multimodal Immunotherapy to Combination Treatment Strategies for Children with DIPG: A Single Institution Experience

    Get PDF
    Background: The prognosis of children with diffuse intrinsic pontine glioma (DIPG) remains dismal despite radio- and chemotherapy or molecular-targeted therapy. Immunotherapy is a powerful and promising approach for improving the overall survival (OS) of children with DIPG. Methods: A retrospective analysis for feasibility, immune responsiveness, and OS was performed on 41 children treated in compassionate use with multimodal therapy consisting of Newcastle disease virus, hyperthermia, and autologous dendritic cell vaccines as part of an individualized combinatorial treatment approach for DIPG patients. Results: Patients were treated at diagnosis (n = 28) or at the time of progression (n = 13). In the case of 16 patients, histone H3K27M mutation was confirmed by analysis of biopsy (n = 9) or liquid biopsy (n = 9) specimens. PDL1 mRNA expression was detected in circulating tumor cells of ten patients at diagnosis. Multimodal immunotherapy was feasible as scheduled, until progression, in all patients without major toxicity. When immunotherapy was part of primary treatment, median PFS and OS were 8.4 m and 14.4 m from the time of diagnosis, respectively, with a 2-year OS of 10.7%. When immunotherapy was given at the time of progression, median PFS and OS were 6.5 m and 9.1 m, respectively. A longer OS was associated with a Th1 shift and rise in PanTum Detect test scores. Conclusions: Multimodal immunotherapy is feasible without major toxicity, and warrants further investigation as part of a combinatorial treatment approach for children diagnosed with DIPG

    A single intravenous dose of prednisolone induces phosphatidylserine externalization, loss of surface marker expression and a 24-h net increase in human peripheral blood lymphocytes ex vivo

    No full text
    To understand how corticosteroids act; a characterization of their effects on lymphocytes is necessary. The effect of in vivo corticosteroids on lymphocyte subpopulations, their surface molecules and externalization of phosphatidylserine (apoptosis) is examined. In a crossover study, a single, intravenous dose of 2 mg/kg prednisolone or saline was given to six male adult human volunteers. Blood samples were withdrawn before and 30 min, 2, 5, 23 and 29 h thereafter. Lymphocyte subsets were determined by FACS analysis. Externalization of phosphatidylserine was measured by Annexin-V; cell fragments were excluded by propidium iodide staining. Lymphocyte number decreased from 2,007 +/- 473 to 634 +/- 119 microl after 5 h and rose to 3,112 +/- 436 microl after 23 h. CD4, CD8 and B cell counts declined significantly after 5 h (P <or = 0.01). The expression of CD28 or CD95 on T cells and the natural killer cells were unaffected. There was a significant rebound of lymphocyte numbers above baseline 23 h after prednisolone. At baseline 9.9 +/- 3.8% of cells in the lymphocyte gate did not stain for CD3, CD20 or CD56 (referred to as "null cells"). 5 h after application of prednisolone, there was a significant increase of "null cells" (28 +/- 12%, P = 0.018). The percentage of phosphatidylserine positive CD4 cells rose from 8.1 +/- 3.3 to 19.8 +/- 8% after intravenous prednisolone, while the percentage of phosphatidylserine positive CD8, B and NK cells remained largely unchanged. Prednisolone induces a most significant depletion of CD4 cells, which to some degree is associated with apoptosis. The net increase of lymphocyte numbers 23 h after prednisolone application may be a beneficial late effect of a single i.v. prednisolone sho
    corecore