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[1] Hydraulic tomography is a powerful technique for characterizing heterogeneous
hydrogeologic parameters. An explicit trade-off between characterization based on
measurement misfit and subjective characterization using prior information is presented.
We apply a Bayesian geostatistical inverse approach that is well suited to accommodate a
flexible model with the level of complexity driven by the data and explicitly considering
uncertainty. Prior information is incorporated through the selection of a parameter
covariance model characterizing continuity and providing stability. Often, discontinuities
in the parameter field, typically caused by geologic contacts between contrasting lithologic
units, necessitate subdivision into zones across which there is no correlation among
hydraulic parameters. We propose an interactive protocol in which zonation candidates are
implied from the data and are evaluated using cross validation and expert knowledge.
Uncertainty introduced by limited knowledge of dynamic regional conditions is mitigated
by using drawdown rather than native head values. An adjoint state formulation of
MODFLOW-2000 is used to calculate sensitivities which are used both for the solution to
the inverse problem and to guide protocol decisions. The protocol is tested using synthetic
two-dimensional steady state examples in which the wells are located at the edge of the
region of interest.

Citation: Fienen, M. N., T. Clemo, and P. K. Kitanidis (2008), An interactive Bayesian geostatistical inverse protocol for hydraulic

tomography, Water Resour. Res., 44, W00B01, doi:10.1029/2007WR006730.

1. Introduction and Background

[2] A principal challenge in hydrogeology is the need to
obtain details on characteristics and properties of an aquifer
over potentially large areas. The installation of wells is
expensive and often constrained by surface construction,
property access considerations, and a host of other issues.
Best approaches are those that make the most of the data
available within the context of errors. Early aquifer charac-
terization was based on pumping tests performed in a single
well (converging radial flow), assuming a homogeneous
aquifer, and with various other assumptions, fitting an
analytical solution to the drawdown curve. This work began
with Slichter [1899] and Thiem [1906] for steady state and
Theis [1935] extended it to transient conditions. Compendia
of special cases under various conditions are presented in
textbooks [e.g., Batu, 1998; Kruseman and De Ridder,
1990]. These solutions provide a homogeneous bulk aver-
age of the target hydraulic parameter. However, no medium
is truly homogeneous and even subtle heterogeneity can
play an important role in interpreting flow, and especially
transport behavior [see, e.g., Mackay et al., 1986; Freyberg,
1986]. Liu et al. [2007] also showed that even correct mean

hydraulic parameters cannot correctly predict drawdown
based on pumping tests at different locations in the domain.
To better simulate the system of interest, models have
grown in complexity with increasing numbers of nodes at
a pace constrained mostly by advances in computational
power. Often the number of nodes in a model greatly
exceeds the available number of measurements resulting
in an underdetermined problem. Methods that incorporate
prior information or enforce a structure on the parameters
result in an even-determined problem and the Bayesian
geostatistical approach adopted in this work is such a
method.
[3] In this work, we illustrate the value of a flexible

approach to the inverse problem. Specifically, zonal bound-
aries are inferred from observations assisted by a small but
important amount of prior information. In the examples we
evaluate, perfect correspondence between model predictions
and observations can be obtained if the boundaries of
homogeneous zones are known in advance, but the real
power of the method employed herein is in both determin-
ing where zonal boundaries are located, and the level of
complexity that should be present within each zone. We also
contend that, rather than being a black box, inverse mod-
eling is an interactive process requiring judgment from the
practitioner at several steps.
[4] Yeh and Lee [2007] recently argued that a paradigm

shift in aquifer characterization, using methods that allow
for more detailed parameterization, is essential and immi-
nent. We agree and contend that for many studies the
information available from wells is underutilized when used
only to estimate hydraulic parameters for one or very few
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homogeneous zones. Li et al. [2007] showed that hydraulic
parameter values obtained from fitting Theis [1935] curves
to data from individual pumping tests at multiple locations
and interpolating results does not correctly characterize the
heterogeneous distribution although the mean parameter
values are calculated correctly. Similarly, Straface et al.
[2007] illustrated that sequential testing with a distributed
groundwater inverse model often yields a more geologically
realistic characterization. Inverse modeling allows multiple
measurements of drawdown or head change to guide the
estimation of hydraulic parameters. The inverse problem,
however, is typically underdetermined with many more
unknown parameters (i.e., hydraulic conductivity values in
grid cells for the model) than measurements (drawdown
values at a limited number of wells, for a limited number of
pumping tests). Underdetermined problems do not have a
unique solution. This shortcoming can be overcome either
by collecting more measurements until they equal or exceed
the number of parameters to estimate, by effectively
decreasing the number of parameters through lumping, or
by constraining the solution using Bayes’ theorem and the
inclusion of prior information.
[5] As Yeh and Lee [2007] suggest, rather than installing

more wells to reduce the ratio of parameters to observations,
multiple pumping tests or ‘‘stimulation events’’ can be
performed using various configurations of existing wells.
The pumping/drawdown response from the series of tests
can form a single inverse problem that can be solved to find
the set of hydraulic parameters that best represents the
observations from all the tests simultaneously. This tech-
nique has been called hydropulse tomography [Tosaka et
al., 1993], a sequential aquifer test [e.g., Liu et al., 2002], or
more commonly hydraulic tomography [Bohling, 1993;
Gottlieb and Dietrich, 1995]. Hydraulic tomography devel-
oped at the confluence of techniques in several fields.
Tomographic methods have a long history in geophysics
[Sharma, 1997] using seismic, electric current, or radar
wave propagation through an aquifer to constrain inversion
of petrophysical properties. By analogy, the propagation of
water pressure waves can be used to recover hydraulic
properties [Tosaka et al., 1993; Vasco et al., 2000; Brauchler,
2005]. Several methods of incorporating this information into
the groundwater inverse problem have been proposed,
including direct inversion of head data [Tosaka et al.,
1993; Gottlieb and Dietrich, 1995; Butler et al., 1999; Yeh
and Liu, 2000], steady shape analysis [Bohling et al., 2002],
asymptotic streamline inversion [Vasco and Datta-Gupta,
1999], and matching temporal moments of drawdown [Li et
al., 2005; Zhu and Yeh, 2006]. Recent work on both sandbox
models [Illman et al., 2007; Liu et al., 2007] and a field
application [Li et al., 2007] highlight the power of hydraulic
tomography in general, and a Bayesian-based parameter
estimation approach specifically. The main contribution of
the present work is in illustrating the importance that
discontinuities in hydraulic conductivity, even of only a
single order of magnitude, can impart on the solution of a
hydraulic tomography inverse problem. In the following
sections, we discuss methods to determine and evaluate
zonation candidates to obtain the best parameter estimation
given the available data.
[6] Another motivation for hydraulic tomography is the

notion that each pumping test location in an aquifer focuses

interrogation on a different part of the aquifer. Giudici et al.
[1995] examined the value of combining multiple stimula-
tions of an aquifer to refine distributed transmissivity
estimates. Multiple pumping tests with a small network of
wells can be much more informative than a single pumping
test with a much larger network of observation wells
[Snodgrass and Kitanidis, 1998]. Even with only two wells,
Kunstmann et al. [1997] showed improved characterization
when performing unequal strength dipole pumping tests
using one well as a source and the other as a sink, and then
reversing the configuration. The specific configuration of
injection, extraction, and monitoring wells in the field
impacts the informative coverage. In the context of dis-
persivity evaluation, Tiedeman and Hsieh [2004] explored
the differences among single-well converging radial pump-
ing tests and equal and unequal strength dipole tests.
Although their focus was on the characterization of dis-
persivity under different flow conditions, they also high-
lighted the different areas of an aquifer interrogated under
the various flow conditions.
[7] In this work, we present a protocol for implementing

hydraulic tomography, and propose an interactive inversion
scheme using Bayesian geostatistical inverse theory as the
kernel. Prior information about aquifer parameter character-
istics enforces a level of smoothness or continuity in the
parameter field. By ‘‘interactive’’ we mean that aquifer
structure, rather than being fixed a priori, is identified
through the inversion process and is evaluated by the
modeler multiple times both through the inclusion of prior
information and the selection of zones. This interactive
aspect is motivated by recognition that inverse methods
should not be applied as a black box but rather that
modelers must be involved and make decisions impacting
the results throughout the process. Intermediate results are
examined to explore the impact various selections of both
structural parameters (the variogram parameters characteriz-
ing the nature of prior information) and zonation candidates
have on the solution. This probabilistic approach imposes
minimal prior assumptions on the parameters, allowing
pertinent information contained within the data to drive
the solution and explicitly accounting for uncertainty.
[8] Uncertainty is introduced both through epistemic

uncertainty and our inability to fully characterize inherent
variability of the media we model. Epistemic uncertainty,
which is the error introduced by imperfect and sparse
measurements, roundoff error, approximations of models,
and conceptual model errors, can be reduced but never fully
removed by improving models and collecting more and
better data. An epistemic error term accounts for the
presence of epistemic uncertainty in the inversion. Inherent
variability, or the heterogeneity of parameters in the aquifer,
cannot be reduced but is accounted for through prior
covariance.
[9] The Bayesian geostatistical inverse approach to hy-

draulic conductivity identification is usually performed
assuming a constant but unknown mean about which the
best estimate varies [e.g., Hoeksema and Kitanidis, 1984;
Snodgrass and Kitanidis, 1998]. In some applications, how-
ever, it may be more appropriate to use a variable mean if a
prior trend is justified [Kitanidis, 1997], or to include diffuse
information about the mean [Nowak and Cirpka, 2004].
Taking this concept further, the known hydrogeology of the
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site may indicate segregation into zones with independent
means that may improve the solution. For example, in the
inversion of electromagnetic borehole flowmeter data, sig-
nificant improvement was obtained by assigning zonal
boundaries on the basis of a sharp contact between highly
contrasting hydraulic conductivity zones [Fienen et al.,
2004]. In some cases, prior knowledge such as discrete
layering [Bohling et al., 2007], geophysical results
[Hyndman et al., 2000], or other information may guide the
selection of zone boundaries.
[10] It is critical to acknowledge that once such bound-

aries are defined, they act as strong constraints on the
solution, so care must be taken to justify the placement of
zones. Ideally, the data that directly constrain the inversion
can also provide enough information to indicate an appro-
priate zonation scheme. Exploiting such information
empowers the data to drive the inversion. In this work,
we assume only that a practitioner suspects the presence of
sharp contacts, and some expert knowledge is employed to
select zones on the basis of interrogation of the best estimate
first obtained assuming a constant mean. Practitioners then
select among several candidates for appropriate zonations
and are guided toward final selection of a best candidate
using metrics based on examination of orthonormal resid-
uals as proposed by Kitanidis [1991, 1997].
[11] Given N distinct screened intervals that can be used

either for pumping or observation, there are two main
strategies for performing the pumping tests and obtaining
the observations to be used for hydraulic tomography. The
first strategy is to pump each well in turn while monitoring
all the other wells. The second strategy is to perform a
sequence of dipole tests in which water is injected into one
well and extracted out of another at the same rate. Again,
the pressure is observed in every well not being pumped.
The former is referred to as ‘‘single well hydraulic tomog-
raphy’’ (SHT) and the latter as ‘‘dipole hydraulic tomogra-
phy’’ (DHT). The number of possible stimulation events in
the field for SHT is N resulting in N (N � 1) head

observations. For DHT, there are
N N�1ð Þ

2
combinations of

dipoles resulting in
N N�1ð Þ N�2ð Þ

2
head observations.

[12] The number of stimulation events translates directly
into the number of forward model runs. Thus, for a given
number of wells, much more data may be obtained using
DHT. The cost of installing wells is greater than the cost of
performing pumping tests, so performing as many tests as
practical with a given well field should lead to the best
characterization possible. For a given level of epistemic
uncertainty attributed to each measurement, the greater
number of data obtained with dipoles rather than single
well tests can average out measurement errors thus reducing
uncertainty. Furthermore, dipoles are expected to reach
steady state faster than single well tests, so we explore
DHT in the synthetic examples of this work.
[13] The progression from a set of field observations to a

best estimate of the hydraulic conductivity field is guided by
a combination of sensitivity analysis of observations to
parameters, the degree of prior information weighting, and
the selection of zones. The interpretation of the solution to
the geostatistical inverse problem as a mapping of observa-
tions into parameter space through the use of stochastic
‘‘splines’’ was discussed by Kitanidis [1998] and further
explored in the context of multiple pumping tests by

Snodgrass and Kitanidis [1998]. For a large number of
wells, it may be infeasible to perform all possible config-
urations of pumping tests to fully realize the potential
benefit of employing the DHT protocol. Sensitivity matrices,
discussed in section 6, may identify redundant information
resulting from some of the dipoles, or one may simply select
a subset of all dipole configurations to use. Three synthetic
examples are included: a stationary heterogeneous field and
two fields of homogeneous hydraulic conductivity that
contain inclusions. The stationary heterogeneous field
serves as a demonstration model under ideal conditions
while the contrast in the inclusion cases push the constant
mean assumption to its limit and illustrates the value of
using zonation to provide for different mean values in
distinct zones.

2. Statement of the Problem

[14] The goal of this work is to perform hydraulic
tomography using several pumping and observation wells
to obtain a probabilistic estimate for a hydraulic conductiv-
ity field. Because the probabilistic estimate is formulated to
consider inherent variability and epistemic uncertainty, it
provides a direct measure of uncertainty about the most
probable estimate. Using steady state tests, a Bayesian
geostatistical inverse approach is applied to the problem.
Prior information is limited to the location of well screens
available for pumping and drawdown observations, selec-
tion of an appropriate generalized covariance function used
in the prior covariance for the inversion, and a zonation
assumption. Selection of the generalized covariance func-
tion model is based on the general presumed characteristics
(e.g., smoothness or continuity) of the parameter field. The
data dictate selection of the parameters for the covariance
model which determines the degree to which this charac-
teristic is enforced. The initial zonation assumption is a
single unknown mean (i.e., a single zone). The role of the
prior covariance and the estimation of its structural param-
eters are discussed below. For this work, an exponential
generalized covariance function is used with a large integral
scale to allow the function to mimic a linear covariance
function while behaving as an appropriate stationary
covariance.
[15] The stimulation events are performed at steady state

in two dimensions. The forward model used to generate
synthetic observations and to solve the inverse problem is
MODFLOW-2000 (MODFLOW) [Harbaugh et al., 2000].
An adjoint state version of MODFLOW is applied to
calculate sensitivity matrices [Clemo, 2007].
[16] In steady state inversion, the aquifer must recover

from each stimulation event to ensure that the observations
from one test are not impacted by conditions still changing
from the previous test. Over the course of a field experiment
it may be difficult to isolate an aquifer from all impacts of
regional conditions such as distant pumping activity, evapo-
transpiration, or recharge. Assuming that regional condi-
tions are steady state over the long term can introduce
significant uncertainty and error in the estimation of param-
eters. Therefore we formulate the governing equations more
generally to mitigate changing system state. If regional
conditions change at a timescale slower than an individual
stimulation, but faster than the duration of an entire hy-
draulic tomography experiment, this uncertainty can be
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reduced by working with drawdown rather than head
values. By controlling the conditions under which data are
collected the data value is increased and uncertainty is
reduced.
[17] Consider the governing equation of groundwater

flow for a steady state isotropic condition [Fetter, 1994]

r � K xð Þrf0ð Þ ¼ �R xð Þ ð1Þ

with f0 ¼ fb on the boundary G ð2Þ

where K(x) is hydraulic conductivity, x is a position vector,
f0 and fb are hydraulic head and R(x) is the preexistent
recharge. All these variables are spatially variable.
[18] Next, the system is stimulated through pumping in

wells or any other stimulation, expressed as a function of
space on the right hand side:

r � Krf1ð Þ ¼ f xð Þ � R xð Þ ð3Þ

with f1 ¼ fb on the boundary G ð4Þ

where f (x) is a spatial function including all stimuli, and R
(x) remains as the preexistent recharge.
[19] If we are interested in the quantity fD ¼4 (f1 � f0)

then, by superposition, we can subtract the previous two
equations

r � Kr fDð Þð Þ ¼ f xð Þ � R xð Þ � �R xð Þð Þ ¼ f xð Þ ð5Þ

with fD ¼ 0 on the boundary G ð6Þ

[20] In thisway, provided thatfb andR (x) are constant over
the timescale of f (x), we are left with a problem that is
independent of boundary conditions including uncontrolled
recharge and regional flow. Rather than measuring and simu-
lating head relative to a constant datum, the head measured in
each well at the start of each stimulation event serves as the
datum for that event. For the observation data, we then use
drawdown (head difference) rather than head. This is consis-
tent with equations (5) and (6). Previous hydraulic tomography
applications have used drawdown rather than raw head data
[see e.g., Li and Cirpka, 2006], although they were motivated
by the need for integratable data to calculate moments for
transient data and do not discuss the impact of regional
conditions. Steady shape conditions described by Bohling et
al. [2002] provide another useful alternative intermediate
between transient and steady state conditions.
[21] To implement the steady state method outlined

above, changes in regional conditions must occur on a
timescale slower than the individual pumping stimulation
event. The regional conditions may be different for each
stimulation, but over the course of an individual stimulation,
they should be effectively constant. Dipoles may reach
steady state conditions more rapidly.

3. Bayesian Geostatistical Inversion: The
Quasi-linear Approach

[22] The inverse method used in this work is the Bayesian
geostatistical inverse method [e.g., Hoeksema and Kitanidis,

1984; Kitanidis, 1995]. A summary of the derivation
follows.

3.1. Bayes’ Theorem

[23] This method is rooted in Bayes’ theorem, which states

p sjyð Þ / L yjsð Þ p sð Þ ð7Þ

where p(sjy) is the posterior probability density function
(pdf) of the unknown parameters (s), L(yjs) is the
conditional pdf of the observations (y) given the parameters,
referred to as the likelihood function, and p(s) is the prior
pdf. We assume these pdfs to be multi-Gaussian although
this assumption can be relaxed using more computationally
intensive Markov chain Monte Carlo methods [e.g.,
Michalak and Kitanidis, 2003; Fienen et al., 2006]. The
prior pdf contains limited assumptions about the structure of
the parameter field prior to the experiments being performed
and measurements being made. The likelihood function
provides the means to update this prior information with the
results of experiments and/or measurements, yielding the
posterior pdf. The posterior pdf provides the best estimate
and an estimate of uncertainty in the parameters conditional
upon both the prior information and the experiments or data
analysis.
[24] Using a probabilistic approach acknowledges the

nonuniqueness of the parameter estimation problem and
incorporates uncertainty from multiple sources into the
process expressed in the posterior pdf. It is also possible
to estimate posterior uncertainty of the estimated parame-
ters, although these results are not presented in this work.
Kitanidis [1995] describes the calculation of posterior
covariance necessary to quantify posterior uncertainty.
3.1.1. Prior Probability Density Function
[25] The prior pdf of s (p(s) in equation (7)) can be

characterized through its mean and covariance. We model s
as a random process with mean

E s½ � ¼ Xb ð8Þ

where E[�] indicates expected value, b is a vector of
unknown drift parameters (p � 1) and X is an (m � p)
matrix of base functions. The matrix X associates each of the
m values of s with the appropriate element of b, and can
express zonation or trend information known a priori about s.
For a problem with a single, constant mean, X is simply an
(m � 1) vector of ones. For a problem with multiple zones,
each with a corresponding mean value bj,X is an assignment
matrix where Xij is 1 if the parameter i is in the zone with the
jth mean value bj, and is zero otherwise.
[26] To enforce nonnegativity of s in unconstrained

optimization it is advantageous to work with the logarithm
of hydraulic conductivity

s ¼ ln k ð9Þ

where k is the hydraulic conductivity vector.
[27] The prior covariance (Q) of s is

Q qð Þ ¼ E s� Xbð Þ s� Xbð ÞT
h i

ð10Þ

This approach is an empirical Bayes technique, so a model
of Q (q) must be specified a priori (e.g., a variogram type),
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but the parameters (e.g., the variogram parameters, q) are
estimated on the basis of the data. For the remainder of this
section, Q(q) is assumed known, and the selection of the
specific model for Q(q) and its parameters (q) are discussed
in the next section.
[28] Assuming a Gaussian distribution, the prior pdf is

p sð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þm det Qð Þ

p exp � 1

2
s� Xbð ÞTQ�1 s� Xbð Þ

� �
ð11Þ

where det (�) is the matrix determinant.
3.1.2. Likelihood Function
[29] The likelihood function (L(yjs) in equation (7)) is a

measure of misfit between predictions of the measurements
made for a specific set of parameter values weighted by
epistemic uncertainty. The measurement equation relates the
observations to the unknown parameters

y ¼ h sð Þ þ v ð12Þ

where y is an (n � 1) vector of observations (drawdown
measurements), s is an (m� 1) vector of unknown parameters
(log hydraulic conductivity), h(s) is a function or model that
calculates predictions corresponding to observation values as
a function of s, and v is an (n � 1) vector of epistemic error
terms, modeled as a random process with zero mean and
covariance matrix R. Epistemic uncertainty results from
imperfect or sparse measurements and also an incomplete
or inappropriate conceptual model. The epistemic error terms
are assumed independent so R is calculated as

R ¼ s2
RI ð13Þ

where sR
2 is the epistemic uncertainty parameter and I is an

n � n identity matrix. The model error contribution to
epistemic uncertainty may, in reality, be systematic and
correlated [Gaganis and Smith, 2001]. A significant source
of model error is reduced when, as in this case, the scale of
model nodes is smaller than the scale of heterogeneous
variability in the parameters [Gallagher and Doherty,
2007]. Nonetheless, the decision to assume uncorrelated
homoscedacticity in this work was made for practicality,
and the matrix R can easily accommodate structure in the
epistemic error covariance.
[30] The likelihood function is

L yjsð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þn det Rð Þ

p exp � 1

2
y� h sð Þð ÞTR�1 y� h sð Þð Þ

� �

ð14Þ

3.1.3. Posterior Probability Density Function
[31] Applying Bayes’ theorem, the posterior pdf is the

product of equations (14) and (11). After some algebraic
manipulation and removing constants, we can define an
objective function that is equivalent to the negative loga-
rithm of the posterior pdf

L ¼ y� h sð Þð ÞTR�1 y� h sð Þð Þ þ sTGs ð15Þ

where

G ¼ Q�1 �Q�1X XTQ�1X
� ��1

XTQ�1 ð16Þ

[32] A computationally efficient method to find the best
estimate is through superposition of the calculated mean and
fluctuations

ŝ ¼ X b̂þQHTx ð17Þ

where H is the sensitivity matrix. The vector of weights (x),
and the vector of mean values b̂

	 

are found through the

cokriging equations

S HX

HXð ÞT 0

2
4

3
5 x

b̂

2
4

3
5 ¼

y

0

2
4
3
5 ð18Þ

where S = HQHT + R, and H =
@h sð Þi
@sj

is found using adjoint
state calculations.
[33] Estimating hydraulic conductivity from observations

of head, h(s) is nonlinear so we expand the solution about a
current best estimate ~s. Following the quasi-linear approach
of Kitanidis [1995]

h sð Þ � h ~sð Þ þ ~H s� ~sð Þ þ HOT ð19Þ

where HOT are higher-order terms that are disregarded and
~H, as a function of ~s must be recalculated at each lineari-
zation step.
[34] Updating the cokriging equations (equation (18)),

S ~HX

~HX
� �T

0

2
4

3
5 x

b̂

2
4

3
5 ¼

y� h ~sð Þ þ ~H~s

0

2
4

3
5 ð20Þ

[35] Each iteration of this algorithm results in a new
estimate of ŝ using equation (17) with x and b̂ calculated
using equation (20) and an updated computation of ~H For
the next iteration, we replace ~s with ŝ, and find a new ŝ.
Convergence is declared once kL ŝð Þ � L ~sð Þk2 or k̂s� ~sk2
decreases to a small tolerance, where k�k2 indicates an L-2
norm.
[36] In underdetermined inverse problems, such as this

one, adjoint state calculations dramatically increase the
efficiency of calculating the sensitivity matrix H which is
calculated multiple times throughout the inversion process.
Derivations of the adjoint state equations are given by Sykes
et al. [1985] and Sun [1994]. Recall that n indicates the
number of observations and m indicates the number of
parameters. The end result is a formulation that calculates
H using n + 1 model runs rather than them + 1 or 2m + 1 runs
required by the sensitivity equation or traditional perturba-
tion sensitivities. The sensitivity matrix is calculated in

physical space Hij ¼ @hi
@kj

	 

but when we perform the forward

calculation, we must convert to estimation space Hij ¼ @hi
@sj

	 

in which the parameters are log transformed. This is accom-

plished using the chain rule

Hi;j ¼
@hi
@kj

@kj
@sj

¼ @hi
@kj

@ exp sj
� �

@sj
¼ @hi

@kj
exp sj
� �

ð21Þ
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[37] The adjoint state calculations are implemented in a
modified version of MODFLOW. Clemo [2007] provides
the derivation of the equations and implementation details
used for adjoint state in MODFLOW. The savings in
computational effort are greater than tenfold using the
adjoint state method instead of finite differences in the
synthetic cases described below. Most of the savings comes
from the fact that m = 324 while n = 60, but additional
overhead savings are achieved by performing the adjoint
calculations in a single call to the program. In many
applications, m is even greater than n and the advantage
to using adjoint state is more significant.

3.2. Prior Covariance

[38] The prior covariance in geostatistical inversion is
expressed through either a variogram covariance model or a
generalized covariance function. In many random fields,
this covariance model is adequate to handle the variability
of the field, allowing for clusters of similar values rising
above or dipping below the mean in a continuously varying
field. Alternatively, sharp discontinuities may indicate zones
of different mean values which are difficult to model with a
single covariance and mean zone assumption. In the fol-
lowing subsections we first discuss the general covariance
models to be used regardless of zonation followed by a
discussion of incorporation of zones.
3.2.1. Prior Covariance Without Zones
[39] In this work, we adopt the exponential covariance

model from which the linear covariance model can be
approximated as a limiting case

R hð Þ ¼ s2 exp � h

‘

� �
ð22Þ

where s2 is the variance, h is the separation distance (in
absolute value) between nodes, and ‘ is the integral scale. A
large integral scale suggests large pockets of similar
parameter values, whereas a small integral scale indicates
variability at a small scale allowing for a much rougher
solution.
[40] The covariance model can be converted to a variogram

g hð Þ ¼ R 0ð Þ � R hð Þ ¼ s2 1� exp � h

‘

� �� �
ð23Þ

[41] The generalized covariance function (GCF), k(h), is
calculated as

k hð Þ ¼ �g hð Þ þ C ð24Þ

where C is an arbitrary constant. We may assume ‘ is large
relative to h. In this case, variability takes place over the
range of multiple nodes. At the limit as ‘!1, exp � h

‘

� �
!

1 � h
‘. Substituting into equation (22)

R hð Þ ¼ s2 1� h

‘

� �
¼ s2 � s2

‘
h ¼ q‘� qh ð25Þ

where q = s2

‘ . Using this model, since ‘ > max(h), the values
will all be positive and the covariance matrix will be
positive semidefinite and hence an authorized covariance.
The corresponding variogram is the linear

g hð Þ ¼ R 0ð Þ � R hð Þ ¼ q‘� 0� q‘þ qh ¼ qh ð26Þ

[42] By assuming ‘ is constant and sufficiently large (we
use 10 � max (h)), we can use equation (22) with the
substitution of s2 = q‘ as the prior covariance model

R hð Þ ¼ q‘ exp � h

‘

� �
ð27Þ

[43] This model has the dual advantages of having a
single parameter to estimate (q, since ‘ is fixed as large) and
it is a valid covariance. This allows us to set lack of
correlation to zero.
[44] Adopting this GCF, Q in the prior pdf (p(s)) is

Q qð Þ ¼ q‘ exp � h

‘

� �
ð28Þ

3.2.2. Prior Covariance With Zones
[45] Splitting a domain into discrete zones is appropriate

when the mean values of various subdomains are signifi-
cantly different. Using the exponential generalized covari-
ance function (GCF) with a large integral scale, sharp
contrasts in conductivity are incompatible with the smoothly
varying structure described by the prior covariance. How-
ever, sharp contrasts are common in hydrogeologic sedi-
mentary environments in the form of geologic contacts,
particularly at unconformities and paleostream channel
boundaries. As a result, it is often beneficial to segregate
the field into zones, each with its own mean and uncorre-
lated from each other. Determining the location of zones is
difficult without a priori observations indicating where to
draw the lines.
[46] The zones may be characterized by totally different

covariance structures, or by a similar covariance structure
with different mean values. Multiple q parameters might
also be necessary to characterize anisotropy in which
correlation is described by direction-specific parameters.
In both cases, restricted maximum likelihood or another
alternative approach to finding q must be implemented. In
this work, we assume similar covariance structure in each
zone but different means so a single parameter q will apply
to the same general covariance structure. The matrix X
associates each zone with its appropriate element of b̂ in
equation (17). The Q matrix, calculated according to the
specific GCF used, is censored such that for Qij = 0 when
the ith and jth elements are in different zones and the zones
are uncorrelated.
[47] In some cases, compelling information regarding

zones is available in the form of boring logs, outcrop
observations, or other data. Where such data are present,
they should certainly be used to delineate zones and reliance
on the inversion should be focused on estimating the
parameters within the zones. Many approaches are available
for incorporating outside information including multiple-
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point geostatistics [Caers and Zhang, 2004; Feyen and
Caers, 2006], indicator Kriging [Journel, 1983], or cluster
analysis [Tronicke et al., 2004; Bohling et al., 2007].
Alternatively, there is often information in the data that
can drive the selection of zones. For example, Straface et al.
[2007] used inflections in observed drawdown curves, as
suggested by Oliver and Aramco [1990] to indicate bound-
aries of different parameter zones. Minimum gradient
support functionals can also be used in a penalization
method to segregate a parameter field into zones. This
approach is called ‘‘image focusing’’ in geophysics literature
[Portniaguine and Zhdanov, 1999, 2002].
3.2.3. Thresholding to Select Zones
[48] A simplified version of image focusing is to examine

thresholds within the best estimate of a nonzoned model.
Our goal is to empower the data to drive the inversion,
including the zonation. This approach allows us to start the
inversion clear of preconceived notions of zonation candi-
dates and use the observations to indicate appropriate zones.
Zones are indicated by regions varying about different
means. On a histogram, transitions between zones appear
as gaps. The selection and definition of gaps is subject to
expert interpretation, and several candidates are selected
interactively. Metrics are derived below to guide final
selection among these candidates. Therefore, a preliminary
method to screen for zones is to divide a histogram of
parameter values into a region above and a region below a
threshold identified by a gap in the histogram. This is
illustrated for a specific example in Figure 1a. This is an
interactive, qualitative approach as several gaps may be
present and expert knowledge is used to guide the number
of zones and where to make cutoffs. For example, the very
definition of a ‘‘gap’’ on the histogram is subject to
interpretation. Furthermore, a practitioner may enforce more
continuity or split zones by this method if soft information
suggests such actions are appropriate. In this work, three
candidates based on gap locations are made and the sol-
utions are evaluated for each. The three candidate models
were selected by a person unfamiliar with the project and
instructed only to indicate three gaps in each histogram. The
ultimate decision regarding which zonation candidate to
adopt is based on cross validation results (section 4) and
expert discretion.
[49] Figure 1a shows a candidate for zonation selected

from the best estimate of a nonzoned solution using the
method outlined above. Q0, the kernel of Q, is independent
of the structural parameter q. For the linear generalized
covariance function approximated by the exponential

Q0 ¼ ‘ exp � h

‘

� �
ð29Þ

[50] To enforce zonation, this kernel must be censored by
setting all covariance matrix values in Q0 to zero if the two
nodes are in different zones. Figure 2 shows two versions
of the matrix Q0: the top without zonation, and the bottom
split into three zones according to Figure 1a. Q is calcu-
lated as q � Q0. Additionally, X must be created such that
nodes are mapped to the appropriate means as discussed in
section 3.1.1. For each zonation candidate, the geostatistical

model will be different, and the structural parameters, q,
will need to be estimated uniquely.

4. Structural Parameters

[51] Two structural parameters must be estimated along
with the values of hydraulic conductivity in the model nodes:
the epistemic error parameter (sR

2 in equation (13)), and the
prior covariance model parameter (q in equation (28)).
These two parameters are estimated through examination
of orthonormal residuals [Kitanidis, 1991, 1997]. If the
structural parameters are appropriate, the drawdown resid-
uals should have zero mean and little spread about the mean.
Kitanidis [1991] suggested two metrics to evaluate structural

parameters using orthonormal residuals
d2i
s2
i

	 

:

Q2 ¼
1

n� p

Xn
k¼pþ1

d2k
s2
k

ð30Þ

and

cR ¼ Q2 � exp
1

n� p

Xn
i¼pþ1

ln s2
i

� � !
ð31Þ

where n is the number of measurements, p is the number of
hydraulic conductivity drift parameters, d are the residuals
(the actual errors between observations and predictions of
drawdown), and s are the estimation variances. We seek
parameters that minimize cR with the constraint that Q2 = 1.
This is most easily accomplished by selecting a value for sR

2

and varying q over several orders of magnitude. It is easier,
a priori, to determine a reasonable value for sR

2 than for q
since epistemic errors are related to measurement errors for
which there may be estimates. Otherwise, setting sR

2 to 10%
of the mean drawdown value is a reasonable starting value.
[52] The ratio of q

s2
R

controls the trade-off between fitting

the observations and enforcing prior information. Small
values of q

s2
R

produce smoother parameter fields. The optimal

ratio of q
s2
R

that minimizes cR can be found by discrete

graphical intervals as shown in Figure 3 or by using a
line search. Q2 is constrained to be unity by performing
the minimization of cR for a given ratio, then multiplying
both q and sR

2 by Q2. At the next iteration, Q2 will be
equal to one.
[53] From the optimal set of structural parameters for

each zonation candidate, we can evaluate a final metric to
guide selection of the best zonation candidate. Relative
percent difference (RPD) between cR and the optimal sR

2 is

RPD ¼
2 cR� s2

R

�� ��
cRþ s2

R

� 100% ð32Þ

[54] With the constraint of Q2 = 1, cR is equal to the
geometric mean of s2 noting

1� exp
1

n� p

Xn
i¼pþ1

ln s2
i

� � !
¼

Yn
1¼pþ1

s2
i

 ! 1
n�p

ð33Þ

W00B01 FIENEN ET AL.: BAYESIAN HYDRAULIC TOMOGRAPHY

7 of 19

W00B01



[55] The RPD metric is therefore a measure of agreement
between the epistemic error term (sR

2) and the actual error
calculated from the orthonormal residuals (cR). In an
appropriate model, the epistemic error term (sR

2) used in
estimation and the error calculated using orthonormal resid-

uals (s2) should be close to each other since they are two
separate measures of how closely the measurements should
agree with the predictions. Selecting the smallest sR

2 may
lead to selection of an overly rough model that suffers from
the problem of overfitting. On the other hand, RPD is

Figure 1. Zone candidates selected from an exponential GCF inversion assuming a single inner region
zone for the straight inclusion example. The left plots show histograms of model nodes at each hydraulic
conductivity level. The right plots show binary maps of the hydraulic conductivity fields. The gaps were
observed at bins 30, 43, and 54.
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external to the zonation and provides a measure of agree-
ment that is independent of the specific magnitude of
residuals. This provides a semiquantitative guide toward
selection of an appropriate zonation candidate.

5. Designing a Field Test and Inversion Protocol

[56] The implementation of the methodology outlined
above fits into a general protocol based on principles that
may be applied to problems regardless of the experimental
setup (i.e., SHT or DHT). In either case, N wells are
assumed available which can each be configured with a
pump or a pressure transducer. This protocol considers
steady state pumping tests but transient hydraulic tomogra-
phy can be performed with minimal modifications to the
protocol. The protocol is outlined as follows:
[57] 1. Create a pumping and observation protocol:

Whether SHT or DHT will be performed, a systematic
scheme of order of pumping the wells and collection of
observations in all nonpumped wells is required. For SHT,
each of the N wells is pumped individually and pressure is
observed in the remaining N � 1 wells. For DHT, some
subset of the

N N�1ð Þ
2

dipole combinations is pumped while
pressure is observed in the remaining N � 2 wells.
[58] 2. Perform the (steady state) pumping tests: Each

pumping test should be performed long enough that steady
state is achieved at which point the drawdown in each
observation well is recorded. The datum for drawdown in
each observation well is the head in that well immediately
prior to pumping. At the end of all the tests, a single
combined vector of drawdown values, y, will serve as the
data vector in equation (12) and all subsequent calculations.
[59] 3. Initialize the forward model:

[60] Boundary conditions are set such that stimulations in
the core do not impact the boundaries. In this case, constant
head boundaries were used.
[61] Initialize the hydraulic conductivity field as s0. This

can be estimated from prior information, assigned as a
constant value, or may be a previous estimate from a similar
inversion.
[62] Initialize q and sR

2. It is best to start with a high
degree of prior information (strong smoothing), i.e., a ratio

of q
s2
R

less than unity, which makes the solution smooth and

stable. Smoothing will be relaxed gradually by increasing
the ratio of q

s2
R

, revealing more structure in the solution until

the optimal balance is obtained. This adjustment takes place
in step 6.
[63] 4. Run the primary and adjoint problem model runs:

The primary model run is a set of forward runs (in this case
using MODFLOW) corresponding to each stimulation given
the current candidate conductivity field. Initially, the candi-
date is s0 and is subsequently referred to as ~s. The primary
model provides the current estimate of the drawdown
values, h(~s), which is a vector of the same dimension
as y. The adjoint problem run calculates the sensitivity

matrix ~H =
@h ŝð Þi
@sj

. Both results are used to solve equation (15).

[64] 5. Find a new estimate of s, referred to as ŝ by
solving the following system of equations:

ŝ ¼ Xb̂ þQ~H
T
x ð34Þ

S ~HX

~HX
� �T

0

2
4

3
5 x

b̂

2
4

3
5 ¼

y� h ~sð Þ þ ~H~s

0

2
4

3
5 ð35Þ

This new estimate (̂s) is compared with the previous estimate
(~s). These calculations are iterated until kL ŝð Þ � L ~sð Þk2 or
k̂s� ~sk2 decreases beneath a specified tolerance. A line
search may be performed at each iteration to help guide the
solution. The line search is beneficial for strongly nonlinear
problems, such as those with large contrasts [Zanini and
Kitanidis, 2008]. For many problems, a line search is not

Figure 2. Comparison of the Q matrix kernel (Q0) (top)
without zones and (bottom) with zones for an exponential
GCF applied to the straight inclusion synthetic example
with the lowest-threshold zonation. Note that the lowest
values in the bottom plot are equal to zero.

Figure 3. Plot of cR as a function of q
s2
R

ratio for the middle

zonation example of the straight inclusion synthetic case.
The solution with the smallest cR value corresponds to the
optimal trade-off between misfit and prior information. In
all cases, Q2 is constrained to unity.
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required unless is it established that the solution is stalled
and the objective function does not decrease in a satisfactory
fashion. An alternative stabilization approach is the modified
Levenberg-Marquardt method [Nowak and Cirpka, 2004].
[65] 6. Examine the orthonormal residuals to find opti-

mal structural parameters: The entire process, up to this
point, proceeds using the initial structural parameter values
for R and Q. To optimize the structural parameters the
entire solution to convergence of the objective function
(kL ŝð Þ � L ~sð Þk2) and the parameters (k̂s� ~sk2) is performed

for a range of structural parameters. For each ratio q
s2
R

, the

solution for s proceeds to convergence, the metricsQ2 and cR
are calculated, and both structural parameters are multiplied
by Q2, while maintaining their ratio, so that the best estimate
stays the same, but the confidence intervals are changedwhen
Q2 is unity. The ratio with the lowest value of cR is retained as
the optimal structural parameter set. When proceeding to the
next ratio of q

s2
R

, use the most recent ŝ as the starting value. It

should be closer to the true s than a totally uniform guess and
will speed convergence.
[66] 7. Explore zonation candidates: Use the zonation

approach outlined in section 3.2.2.1 above to select several
candidates for zonation. For each candidate, perform the
entire inversion (steps 4–6).
[67] 8. Evaluate the best zonation candidate: Three met-

rics guide which zonation candidate is best. The cR (equa-
tion (31)) value should be low, with Q2 (equation (30))
constrained to be one and the relative percent difference
(RPD) between cR and sR

2 should be low (equation (32)).

6. Sensitivity Matrices and Splines

[68] Kitanidis [1998] and Snodgrass and Kitanidis [1998]
discussed the use of sensitivity matrices and interpolation
splines to examine the behavior of geostatistical inversion.
The solution for the best estimate from equation (17) at each
parameter node location is the superposition of a mean
value (Xb̂) and an interpolation ‘‘spline’’ (QHT) weighted
by x. The matrix X associates the node location with the
appropriate mean value of b̂ which is estimated by solving
the system in equation (18) or equation (20). The interpo-
lation weights, x, are calculated in the same system and are
used, combined with the data-model cross covariance
(QHT) to map the influence of each observation in y to
the parameters. To understand both the influence of specific
measurements in y on the best estimate, and to see which
nodes are expected to be estimable, we can inspect both the
raw sensitivity (H) and the splines (QHT). This discussion is
in the context of the specific model presented in section 7.
The examination of sensitivity and splines can guide the
selection of both well configurations and pumping strategies.
[69] The row of the sensitivity matrix (H) corresponding

to an individual measurement can be projected onto the
conductivity field, which is done for each observation for
the DHT protocol in Figure 4. In Figure 4, the color scale is
truncated to show detail of the field away from the well
locations which would otherwise be eclipsed by very few
very high values immediately adjacent to the pumping and
observations wells. For comparability, the reference K field
is a homogeneous field with magnitude equal to the mean of
the true solution. A homogeneous reference field was

selected because it highlights sensitivity resulting from well
arrangement and protocol rather than K contrasts.
[70] The ‘‘splines’’ incorporate information from the prior

covariance matrix Q. Particularly in the case of a linear
prior covariance model, this information is diffuse and both
stabilizes the solution and enforces smoothness in the best
estimate and realizations. Figure 5 shows the normalized
splines projected onto the computational domain. The
normalization is performed relative to the highest value in
the specific column of QHT and reveals the general shape of
the splines throughout the domain. The splines and sensi-
tivities with the greatest contribution are those in which the
injection and extraction wells span the domain and the
observation well is near one of the pumped wells. Examples
are R 4/Ob 1 and R 12/Ob 4 in Figure 5. The sign of both
the sensitivity and the spline is controlled by proximity of
the observation well to a pumped well. Negative sensitivity
coefficients occur near extraction wells whereas positive
sensitivity coefficients occur near injection wells. The least
sensitive configurations are those when the dipole is in-
duced entirely along one edge of the domain at two corners
and the observation well is either between or on the center
of the opposite edge. The observations for Runs 2 and 14
illustrate these configurations. When the dipole is induced at
two opposite corners with the observation well in a third
corner, sensitivity is also very diffuse and the splines not
very informative. The result is that the greatest sensitivity
and, correspondingly, the most informative splines occur
along the centerline of the K field. Interrogation of the
corners of the K field is weaker using dipoles, and in
general, significant spread is observed through the field.

7. Illustrative Examples

[71] We present three examples to illustrate the protocol
outlined above. They are synthetic examples chosen to
challenge the applicability of the method, particularly the
chosen generalized covariance function (GCF). The linear
GCF gives best results when applied to continuously
varying fields. However, it is a flexible GCF and often
serves as the first choice in inverse problems when little is
known about the structure of parameter space. Applying this
model to a parameter field with strong discontinuities
highlights its flexibility but also pushes it to its limit of
applicability. Implementation is performed using a special
exponential GCF discussed in section 3.2.1 to approximate
the linear. Discussion of the use of sensitivity matrices and
splines was presented in the context of these specific
examples.
[72] In each example, the core is surrounded by a buffer

zone with K = 50 m
year

. The buffer zone extends nearly 1 km
in each direction and ensures that the boundary conditions
do not play a role in the tests. In the stationary heteroge-
neous example, K ranges from 1 to 12 m

year
whereas the

inclusion examples contain an inclusion with K = 1 m
year

surrounded by a K = 10 m
year

matrix. The aquifer is modeled

as confined and two dimensional, with observations
recorded at steady state. The inner region for all three
examples is 9 � 9 meters with square discretization and
0.5m nodes resulting in 324 K values to estimate as shown
in Figure 6. No wells are included within the inner region
but six wells are included along the edges. No recharge is
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Figure 4. Sensitivity matrix H for DHT observations assuming a homogeneous K field. The n rows of
H are displayed on n plots, mapped onto the geometry of the inner region model nodes. Solid circles are
extraction wells, solid diamonds are injection wells, and circled asterisks are observation wells. The scale
is truncated at the high and low ends to show detail in the middle; actual values immediately adjacent to
wells are more extreme than �10 to 10. In each title, ‘‘R’’ refers to the dipole test number, and ‘‘Ob’’
refers to the observation number. For this problem with six wells, 15 dipole tests are performed, each with
four observations.
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applied so the only sources of water is inflow from the
distant boundaries at which constant head is enforced, and
injection in wells in the dipole case. In the case of dipoles,
the injection well is the source of water extracted from the
extraction well and the head field is not perturbed very far
from the core. As discussed above, the changes in head due
to pumping (drawdowns) are used. The entire buffer has a

single constant value which is unknown a priori and is
estimated along with the inner region. As a result, the Q, H,
and X matrices account for a homogeneous zone that
contains all nodes in the buffer zone.
[73] As synthetic examples, the forward model must be

run using the true K field to obtain the measurements (y).
These measurements are corrupted with a small, normally

Figure 5. Interpolation splines for DHT displayed on the inner region model nodes. Reference K field
and legend are the same as in Figure 4. Scale is normalized to largest value in each plot to reveal internal
structure.
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distributed noise (N ~(0, 1 � 10�4)) to represent measure-
ment uncertainty before being used in the inverse solution.
To start the estimation, the algorithm is seeded with a
constant value (the overall mean of the K field).
[74] All examples were analyzed using both DHT and

SHT protocols but only DHT results are discussed in this
work. Fienen [2007] gives an expanded discussion of SHT
protocol results. SHT results were generally comparable

although in several cases the impact of measurement noise
was much more significant than in the DHT results.
[75] For the DHT protocol, each dipole configuration is

used resulting in 15 stimulation events, each with 4 obser-
vations yielding 60 discrete drawdown observations. For
each dipole, one well extracts and the other injects at
95 liters per minute. In dipoles of unequal strength, the
results of which well is injection and which is extraction

Figure 7. True hydraulic conductivity (K) field for the
stationary heterogeneous field synthetic example.

Figure 8. Best estimate of the K field for the stationary
heterogeneous field synthetic example.

Figure 6. Overview of the model domain showing wells and nodes. Each well can be either pumped or
used for observation, according to the protocol of the particular stimulation. The inner region is
surrounded by a homogeneous buffer extending 1 km in each direction, depicted in gray, intended to
attenuate the impact of boundary conditions.

W00B01 FIENEN ET AL.: BAYESIAN HYDRAULIC TOMOGRAPHY

13 of 19

W00B01



interrogate different areas in the aquifer and provide different
information to the inversion. Therefore, in such cases, it is
advantageous to pump each dipole twice; once for each
configuration. In this case, however, the dipoles are of equal

strength, so each pair is pumped only once. The results of all
dipoles are calibrated simultaneously.
[76] The protocol outlined above is then applied to esti-

mate structural parameters and evaluate zonation strategies.

7.1. Stationary Heterogeneous Field Example

[77] The first example is a smoothly varying synthetic
field shown in Figure 7. This represents a mildly heteroge-
neous field and should be easy to find with this method
without any zonation. Figure 8 shows the best estimate of
the hydraulic conductivity field. The result is smoother than
the true solution with the major features well represented.
Applying the principle of parsimony, one could argue that
an estimation grid of four or five homogeneous zones could
represent this field nearly as well as this highly parameter-
ized solution. However, it would be impossible to know a
priori where to draw the boundaries of the homogeneous
zones. The flexibility of this method allowed the data to
indicate the appropriate level of smoothness that could
capture the variability due to optimal calculation of the
structural parameters.
[78] This finding is possible chiefly because there are no

significant discontinuities that the prior GCF must handle.
This example proves that when the structure conforms to the
model of stationarity and spatial continuity, the algorithm
performs very well. The remaining two examples are less
ideal and both contain significant discontinuities that force
us to seek and employ zones with independent means.

Figure 9. True hydraulic conductivity (K) field for the
straight inclusion synthetic example.

Figure 10. Best estimates for the straight inclusion synthetic example: (top left) no zones, (top right)
low-zone candidate, (bottom left) middle-zone candidate, and (bottom right) high-zone candidate. The
scales are different in each plot to reveal structure.
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7.2. Straight Inclusion Example

[79] The second example is a straight inclusion shown in
Figure 9. Low hydraulic conductivity inclusions in a higher-
conductivity matrix may occur in a fluvial environment
where the matrix is typical river sands and gravels while the
lower-conductivity inclusion is the remnant of a point bar
deposit or overbank deposit made up of finer-grained
material. The first inversion was performed without using
zonation and the best estimate is shown in the upper left
panel of Figure 10. The general pattern is reasonable with
the boundaries between the lower-K inclusion and the
surrounding matrix in the right location. However, the
higher-K regions at the upper and lower portions of the inner
region are artificially smooth and overshoot the higher K
values as the selected GCF is ill suited to represent disconti-
nuities. Figure 1 shows three candidate zonation approaches
based on the first three significant gaps in the histogram of K.
The results of the three zonation candidates are shown in
Figure 10. The lowest-zonation candidate in the upper right
panels of Figure 10 perfectly represents the geometry of the
true K regions. The resulting solutions are nearly perfect as
well since the GCF does not need to account for the
discontinuity. The structural parameter metrics are outlined
in Table 1. The RPD (equation (32)) is lowest for the low-
zonation candidate in this case. This is also indicated to be
best by the mean square error for the hydraulic conductivity
field (MSE) calculated as

Pm
i¼1 Kest � Ktrueð Þ2

m
ð36Þ

where Kest and Ktrue are the estimated and actual parameter
values in each of the m model nodes of the inner region.
[80] This calculation is only possible for synthetic cases,

of course. The ability to compare the results among zona-
tion candidates to ‘‘truth’’ is an advantage of evaluating the
method using a synthetic example.

7.3. Angled Inclusion Example

[81] The third example, depicted in Figure 11, is a narrow
inclusion at an angle oblique to the principal directions of
the model domain which could indicate a clay lens. Three
zonation candidates were chosen on the basis of the histo-
grams presented in Figure 12. The gaps are not as clearly
defined as in the straight inclusion example. The lowest gap
was initially selected, but the inclusion was implied to be
too small and the imposition of such an erroneous zonation
scheme was unstable precluding a meaningful inversion.
The process of selection and evaluation of the zones is
subject not only to the metrics presented in this work, but
also judgment of the practitioner.
[82] As with the previous example, the general shape of

the inclusion is found with DHT even without zones as

shown in Figure 13. Remarkably, the angle of the inclusion
is well represented in the solution and the general extent is
reasonable with some smearing. The lowest of the selected
histogram gaps yields the closest solution as indicated by
the MSE value reported on Table 2. The associated RPD
(equation (32)) values indicate that zones should provide
better results than a nonzoned approach, but do not distin-
guish particularly well among the zonation candidates.

8. Conclusions

[83] This work presents an interactive protocol for hy-
draulic tomography using the Bayesian geostatistical in-
verse method. The interactive aspects of the protocol allow
the imposition of expert judgment and allow practitioners to
investigate the ramifications of their choices. The metrics
from orthonormal residuals provide important guidance
regarding selection of zones and smoothing versus data
reproduction. However, it is up to practitioners to evaluate
the geologic realism provided in each solution. In the
determination of structural parameters and, to a greater
extent, in the selection of zones, interactive opportunities
allow practitioners to audit to algorithm and override
‘‘decisions’’ indicated by the metrics available. Inverse
modeling is not a black box, and expert knowledge still
plays an important role in obtaining realistic and meaningful
estimates of hydrogeologic parameters.
[84] The Bayesian method explicitly considers epistemic

uncertainty and imposes a minimum of prior assumptions
on the parameters. We showed that favorable results can be

Table 1. Structural Parameter Metrics Values for Several Zonation Schemes in the Straight Inclusion Synthetic Example for DHT

Parameter No Zones Low Threshold Middle Threshold High Threshold

cR 5.70 � 10�6 1.00 � 10�6 1.72 � 10�6 2.33 � 10�6

Optimal sR
2 1.44 � 10�6 1.19 � 10�6 1.42 � 10�6 1.78 � 10�6

RPD, % 120 18 19 27
MSE 19.42 1.91 � 10�4 9.91 19.31

Figure 11. True hydraulic conductivity (K) field for the
angled inclusion synthetic example.
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obtained with a relatively small number of wells, even if
located entirely outside the domain in which hydraulic
conductivity parameters are estimated. This could be the
field setup in a case of limited access when seeking lateral
extent information, or a series of cross-sectional multilevel

screened wells in a cross-hole context analogous to seismic
or electrical resistivity tomography. In the cross-sectional
case, a three-dimensional model may be more appropriate.
However, our method is not limited to cases where all wells
are outside the domain of interest. In many cases, wells are

Figure 12. Zone candidates selected from an exponential GCF inversion assuming a single inner region
zone for the angled inclusion example. The left plots show histograms of pixels at each hydraulic
conductivity level. The right plots show binary maps of the hydraulic conductivity fields. The gaps were
observed at bins 18, 23, and 34.
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available within the domain of interest and these wells may
be extremely valuable, providing significant information
about the parameters. An important source of uncertainty
is alleviated in this protocol by referencing all head meas-
urements to immediately antecedent levels. Using draw-
down mitigates the impact that longer-term variations in
regional conditions could otherwise have on confounding
the parameter estimation over the relatively short duration
of each hydraulic tomography stimulation event.
[85] The adjoint state implementation is an efficient and

accurate means to calculate the sensitivities. Examination of
sensitivities and interpolation splines provides valuable
information about which well configurations provide the
most information about the parameter field. Particularly in
the case of dipole hydraulic tomography, this information
can guide the selection of a subset of dipoles from an
existing well field to incorporate into a hydraulic tomogra-
phy experiment.
[86] The examination of orthonormal residuals proved to

be an effective tool in evaluating the trade-off between data

reproduction and prior information. The cR and Q2 metrics
were supplemented by a new metric, the RPD, which is the
relative percent difference between the optimal epistemic
error parameter (sR

2) and cR, interpreted as a proxy for sR
2

measured from a given solution. The RPD should be low
when these values are in agreement and it was shown to
provide guidance about when to accept candidate models
(on the basis of zonation choices) to improve the best
estimate results.
[87] Zonation was shown to be a powerful force in

obtaining best estimates for problems of low-K inclusions.
The best estimate of the K field obtained without zones
resulted in oversmoothing where the prior covariance model
was taxed too much trying to capture discontinuities in the
field. Zones determined through active examination of
preliminary nonzoned results yielded excellent solutions,
particularly when the zone choices closely matched the
inclusion dimensions. When the zones were selected inap-
propriately, the solution suffered, but the metrics used here
provided guidance on which to accept and which to reject.

Figure 13. Best estimates for the angled inclusion synthetic example: (top left) no zones, (top right)
low-zone candidate, (bottom left) middle-zone candidate, and (bottom right) high-zone candidate. The
scales are different in each plot to reveal structure within each solution.

Table 2. Structural Parameter Metrics Values for Several Zonation Schemes in the Angled Inclusion Synthetic Example for DHT

Parameter No Zones Low Threshold Middle Threshold High Threshold

cR 7.66 � 10�6 4.38 � 10�6 4.37 � 10�6 4.16 � 10�6

Optimal sR
2 1.24 � 10�6 1.38 � 10�6 1.50 � 10�6 1.32 � 10�6

RPD, % 144 104 98 104
MSE 60.77 9.44 10.84 19.59
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The promise shown by a combination of the linear prior
covariance model and zones motivates future development
of more robust zonation strategies.
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