335 research outputs found
Perturbative Check of the Action and Energy Lattice Sum Rules
Lattice sum rules are checked using lattice perturbation theory. The action
sum rule gives a relation between the quark-antiquark potential, its
logarithmic derivative with respect to distance and the expectation value of
the action; the energy sum rule expresses the potential as the sum of the
energy in the gluon fields and of an anomalous term. Two different independent
calculations of the quark-antiquark potential are presented, and the
transversality of the gluonic vacuum polarization on the lattice is proven. The
crucial part of the action sum rule is an identity whose explicit check using
perturbation theory provides methods and results which are useful for checking
the energy sum rule. Additionally, the gauge invariance of the expectation
value of the Wilson loop up to next-to-leading order is proven. The possibility
of restricting the expectation value of the action to one fixed time slice is
discussed. The energy sum rule is checked perturbatively up to next-to-leading
order and shown to be satisfied with good numerical accuracy. The various
contributions to the quark-antiquark potential are analyzed, and the
restriction of the expectation value of the sum over all spatial plaquettes
(the energy in the magnetic fields) to one fixed time slice is examined.Comment: PhD Thesis, 126 pages, 20 figure
Cleaved surface of i-AlPdMn quasicrystals: Influence of the local temperature elevation at the crack tip on the fracture surface roughness
Roughness of i-AlPdMn cleaved surfaces are presently analysed. From the
atomic scale to 2-3 nm, they are shown to exhibit scaling properties hiding the
cluster (0.45 nm) aperiodic structure. These properties are quantitatively
similar to those observed on various disordered materials, albeit on other
ranges of length scales. These properties are interpreted as the signature of
damage mechanisms occurring within a 2-3 nm wide zone at the crack tip. The
size of this process zone finds its origin in the local temperature elevation
at the crack tip. For the very first time, this effect is reported to be
responsible for a transition from a perfectly brittle behavior to a nanoductile
one.Comment: 8 page
Ultrafast non-linear optical signal from a single quantum dot: exciton and biexciton effects
We present results on both the intensity and phase-dynamics of the transient
non-linear optical response of a single quantum dot (SQD).
The time evolution of the Four Wave Mixing (FWM) signal on a subpicosecond
time scale is dominated by biexciton effects. In particular, for the
cross-polarized excitation case a biexciton bound state is found. In this
latter case, mean-field results are shown to give a poor description of the
non-linear optical signal at small times. By properly treating exciton-exciton
effects in a SQD, coherent oscillations in the FWM signal are clearly
demonstrated. These oscillations, with a period corresponding to the inverse of
the biexciton binding energy, are correlated with the phase dynamics of the
system's polarization giving clear signatures of non-Markovian effects in the
ultrafast regime.Comment: 10 pages, 3 figure
Phase transitions in two-dimensional anisotropic quantum magnets
We consider quantum Heisenberg ferro- and antiferromagnets on the square
lattice with exchange anisotropy of easy-plane or easy-axis type. The
thermodynamics and the critical behaviour of the models are studied by the
pure-quantum self-consistent harmonic approximation, in order to evaluate the
spin and anisotropy dependence of the critical temperatures. Results for
thermodynamic quantities are reported and comparison with experimental and
numerical simulation data is made. The obtained results allow us to draw a
general picture of the subject and, in particular, to estimate the value of the
critical temperature for any model belonging to the considered class.Comment: To be published on Eur. Phys. J.
Electronic interactions in fullerene spheres
The electron-phonon and Coulomb interactions inC, and larger fullerene
spheres are analyzed. The coupling between electrons and intramolecular
vibrations give corrections meV to the electronic energies for
C, and scales as in larger molecules. The energies associated
with electrostatic interactions are of order eV, in C and
scale as . Charged fullerenes show enhanced electron-phonon coupling,
meV, which scales as . Finally, it is argued that non only
C, but also C are highly polarizable molecules. The
polarizabilities scale as and , respectively. The role of this large
polarizability in mediating intermolecular interactions is also discussed.Comment: 12 pages. No figure
Photoelectric Emission from Interstellar Dust: Grain Charging and Gas Heating
We model the photoelectric emission from and charging of interstellar dust
and obtain photoelectric gas heating efficiencies as a function of grain size
and the relevant ambient conditions. Using realistic grain size distributions,
we evaluate the net gas heating rate for various interstellar environments, and
find less heating for dense regions characterized by R_V=5.5 than for diffuse
regions with R_V=3.1. We provide fitting functions which reproduce our
numerical results for photoelectric heating and recombination cooling for a
wide range of interstellar conditions. In a separate paper we will examine the
implications of these results for the thermal structure of the interstellar
medium. Finally, we investigate the potential importance of photoelectric
heating in H II regions, including the warm ionized medium. We find that
photoelectric heating could be comparable to or exceed heating due to
photoionization of H for high ratios of the radiation intensity to the gas
density. We also find that photoelectric heating by dust can account for the
observed variation of temperature with distance from the galactic midplane in
the warm ionized medium.Comment: 50 pages, including 18 figures; corrected title and abstract field
Free induction signal from biexcitons and bound excitons
A theory of the free induction signal from biexcitons and bound excitons is
presented. The simultaneous existence of the exciton continuum and a bound
state is shown to result in a new type of time dependence of the free
induction. The optically detected signal increases in time and oscillates with
increasing amplitude until damped by radiative or dephasing processes.
Radiative decay is anomalously fast and can result in strong picosecond pulses.
The expanding area of a coherent exciton polarization (inflating antenna),
produced by the exciting pulse, is the underlying physical mechanism. The
developed formalism can be applied to different biexciton transients.Comment: RevTeX, 20 p. + 2 ps fig. To appear in Phys. Rev. B1
Scientific Preparations for Lunar Exploration with the European Lunar Lander
This paper discusses the scientific objectives for the ESA Lunar Lander
Mission, which emphasise human exploration preparatory science and introduces
the model scientific payload considered as part of the on-going mission
studies, in advance of a formal instrument selection.Comment: Accepted for Publication in Planetary and Space Science 51 pages, 8
figures, 1 tabl
The surface science of quasicrystals
The surfaces of quasicrystals have been extensively studied since about 1990. In this paper we review work on the structure and morphology of clean surfaces, and their electronic and phonon structure. We also describe progress in adsorption and epitaxy studies. The paper is illustrated throughout with examples from the literature. We offer some reflections on the wider impact of this body of work and anticipate areas for future development.
(Some figures in this article are in colour only in the electronic version
ARPES: A probe of electronic correlations
Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct
methods of studying the electronic structure of solids. By measuring the
kinetic energy and angular distribution of the electrons photoemitted from a
sample illuminated with sufficiently high-energy radiation, one can gain
information on both the energy and momentum of the electrons propagating inside
a material. This is of vital importance in elucidating the connection between
electronic, magnetic, and chemical structure of solids, in particular for those
complex systems which cannot be appropriately described within the
independent-particle picture. Among the various classes of complex systems, of
great interest are the transition metal oxides, which have been at the center
stage in condensed matter physics for the last four decades. Following a
general introduction to the topic, we will lay the theoretical basis needed to
understand the pivotal role of ARPES in the study of such systems. After a
brief overview on the state-of-the-art capabilities of the technique, we will
review some of the most interesting and relevant case studies of the novel
physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental
Techniques", edited by A. Avella and F. Mancini, Springer Series in
Solid-State Sciences (2013). A high-resolution version can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf.
arXiv admin note: text overlap with arXiv:cond-mat/0307085,
arXiv:cond-mat/020850
- …