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Perturbative �Uberpr�ufung der Wirkungs- und
Energie-Gittersummenregeln

Zusammenfassung

Gittersummenregeln werden mittels St�orungstheorie auf dem Gitter �uberpr�uft.
Die Wirkungssummenregel liefert eine Beziehung zwischen dem Quark-Anti-
quark-Potential, dessen logarithmischer Ableitung nach dem Abstand und dem
Erwartungswert der Wirkung; die Energiesummenregel dr�uckt das Potential als
Summe der Energie in den Gluonenfeldern und eines anomalen Terms aus. Zwei
verschiedene unabh�angige Berechnungen des Quark-Antiquark-Potentials wer-
den vorgestellt, und die Transversalit�at der gluonischen Vakuumpolarisation
auf dem Gitter wird bewiesen. Der wesentliche Teil der Wirkungssummen-
regel ist eine Identit�at, deren explizite �Uberpr�ufung Methoden und Ergebnisse
zur Verf�ugung stellt, die bei der Behandlung der Energiesummenregel n�utzlich
werden. Zus�atzlich wird die Eichinvarianz des Erwartungswertes des Wilson-
Loops bis zur n�achstf�uhrenden Ordnung bewiesen. Die M�oglichkeit, den Er-
wartungswert der Wirkung auf den Erwartungswert der Summe der Plaketten
zu einer festen Zeit einzuschr�anken, wird diskutiert. Die Energiesummenregel
wird st�orungstheoretisch bis zur n�achstf�uhrenden Ordnung �uberpr�uft, und es
wird gezeigt, dass sie mit guter numerischer Genauigkeit erf�ullt ist. Die einzel-
nen Beitr�age zum Quark-Antiquark-Potential werden analysiert, und die Ein-
schr�ankung des Erwartungswertes der Summe �uber alle r�aumlichen Plaketten
(die Energie in den magnetischen Feldern) auf den Erwartungswert der Summe
der r�aumlichen Plaketten zu einer festen Zeit wird untersucht.

Perturbative Check of the Action and Energy Lattice Sum Rules

Abstract

Lattice sum rules are checked using lattice perturbation theory. The action
sum rule gives a relation between the quark-antiquark potential, its logarithmic
derivative with respect to distance and the expectation value of the action;
the energy sum rule expresses the potential as the sum of the energy in the
gluon �elds and of an anomalous term. Two di�erent independent calculations
of the quark-antiquark potential are presented, and the transversality of the
gluonic vacuum polarization on the lattice is proven. The crucial part of the
action sum rule is an identity whose explicit check using perturbation theory
provides methods and results which are useful for checking the energy sum
rule. Additionally, the gauge invariance of the expectation value of the Wilson
loop up to next-to-leading order is proven. The possibility of restricting the
expectation value of the action to one �xed time slice is discussed. The energy
sum rule is checked perturbatively up to next-to-leading order and shown to
be satis�ed with good numerical accuracy. The various contributions to the
quark-antiquark potential are analyzed, and the restriction of the expectation
value of the sum over all spatial plaquettes (the energy in the magnetic �elds)
to one �xed time slice is examined.





There are very beautiful and elegant ways of getting these things
these days; but suppose that you were inventing it, what would you
do to �nd [it]? You �ddle around. All the elegant stu� is found
later; the way to learn is not to learn elegant things, it's to �ddle
around blind and stupid. Later you see how it works; polish it up;
remove the sca�olding and publish the result for other students to
be amazed at your ingenuity.

Richard Feynman
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Chapter 1

Introduction

1.1 Quantum Chromodynamics

Only 40 years ago, protons and neutrons were still assumed to be elementary
particles. But already in the �fties of the 20th century, more and more new
so-called "elementary" particles had been found at high energy colliders (see,
for example, [1]); eventually dozens were known, most of them with very short
life times.

The turning point came 1964 with the invention of the quark model [2,
3], which postulates that all of these particles (nowadays known as hadrons)
are composed of sub-particles, the quarks. With this model, the variety of
hadrons could be sorted in a systematic way: the particles with integer spin,
the mesons, consist of a quark-antiquark-pair, the particles with half-integer
spin, the baryons, are bound states of three quarks or three antiquarks. Today
hundreds of hadrons are known, and most of them �t well into the quark model.
The few exceptions can be attributed to so-called glueballs and other exotic
states.

Early experimental support came from high-energy scattering experiments,
which showed that there are sub-particles, called partons, in the proton [4]. The
scale invariance which was observed in these experiments was well explained by
the quark model [5]. Based on these and many other experimental results,
nowadays the quark model is universally accepted; a good introduction can be
found in [6], for instance.

The theoretical description of the quarks and their interactions is provided
by Quantum Chromodynamics (QCD) [7, 8]. In this quantum �eld theory, the
quarks are described by Dirac spinors with an additional degree of freedom
called color ; they are coupled to SU(3) gauge �elds. The quantization of the
bosonic gauge �elds leads to the eight spin-one particles called gluons which
mediate the interactions of the quarks. A prediction of QCD is the existence
of bound states from these gluon �elds, the already above mentioned glueballs.
An early theoretical review of QCD can be found in [9]; for a review of the
experimental support see, for instance, [10] and [11].

A large problem remains, however: no free quarks or gluons ever have been
observed, despite all e�orts taken in the years following the invention of the
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2 CHAPTER 1. INTRODUCTION

quark model [12]. The standard explanation for this is that quarks and gluons
can only exist in bound states; this phenomenon is called con�nement.

It can be explained if one assumes that the force between the quark-anti-
quark pair does not decrease with increasing distance as in electrodynamics,
but instead stays constant|a 
ux tube or string of gluons forms between the
quarks. Therefore, if the distance is increased, a point will be reached at which
the gluon string contains enough energy for the generation of a new quark-
antiquark pair out of the vacuum, breaking the string. Hence instead of sepa-
rating the original quark-antiquark-pair, one has produced two new pairs (this
e�ect is called screening of the color charge). Recent Monte Carlo simulations
on the lattice (see below) con�rm this picture [13].

1.2 Lattice Gauge Theory

The most commonly used method in Quantum Field Theory is perturbation
theory. But for many important problems, unfortunately including quark con-
�nement, perturbative expansions fail: In QCD, the coupling constant is small
at high energies, corresponding to small separations of the quarks (this is known
as asymptotic freedom and is based on the non-abelian nature of the gauge
group), but large at the low energies and relatively large distances occuring in
hadronic bound states. Therefore many non-perturbative methods have been
developed in the past decades in order to treat con�nement.

Most promising is the formulation of QCD on a space-time lattice: space
and time are discretized, so that the number of degrees of freedom is reduced
drastically. Usually one works in euclidean space-time. If additionally one only
looks at a �nite volume and a �nite time interval, there is only a �nite number
of degrees of freedom left, and the generating functional for this discretized
version of QCD can in principle be calculated on a computer. In the limit of
in�nitely small lattice spacing, the results one obtains should reduce to the
continuum results.

Lattice formulations of QCD where �rst suggested 1974 by Wilson [14],
Kogut and Susskind [15]. In the three decades since these proposals, lattice
gauge theory has become a branch of particle physics in its own right. Addi-
tionally, it is closely connected to statistical mechanics and therefore of interest
not only to particle physicist, but also to physicists working on solid state
physics and other many-particle problems. Today, there are lots of encouraging
results from lattice calculations, including the quark-antiquark potential, the
string tension, hadron masses, the QCD phase transition from the hadronic
bound states to a quark-gluon plasma and so on. An introduction to all of
these concepts and a summary of the results can be found in [16], for example.

But one still has to use a very large number of degrees of freedom in order to
get a reasonable approximation to continuum, in�nite volume QCD. Because of
this, very high-dimensional integrals have to be computed. For example, if one
uses a lattice with an extension of only 10 in each of the four directions and for
simplicity considers only the gauge �elds, there are already 320.000 degrees of
freedom (104� 4 (polarization) � 8 (color)). Hence a 320.000-dimensional integral
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has to be performed. Using only 10 points in every direction in this 320.000-
dimensional space in order to evaluate this integral numerically, one would have
to compute and add 10320000 terms!

Obviously this is not feasible; hence the numerical integrals are usually done
by Monte Carlo methods. Most gauge �eld con�gurations have a large action
and thus only contribute very little to the generating functional. Therefore the
functional integral can be approximated by generating a sequence of gauge �eld
con�gurations with a probability distribution given by the Boltzmann factor;
this technique is called importance sampling. Then the expectation values of
operators can be approximated by their ensemble average over these represen-
tative con�gurations.

Simulating the gauge �elds is relatively simple; the quarks pose bigger
problems|for example, fermion doubling [17] and the sign of the fermionic
determinant. Therefore one often works in the so-called quenched approxima-
tion: one neglects the e�ects of dynamical quarks. Obviously the screening
and the string breaking due to the creation of quark-antiquark pairs can not
be observed in such simulations, but they still can give valuable results on the
short distance behaviour of bound states.

For a description of the commonly used Monte Carlo algorithms and a review
of the most important results, see e. g. [16].

1.3 Sum Rules for the Quark-Antiquark-Potential

Although the lattice results reproduce the expected behaviour of the quark-
antiquark potential, including the con�nement, quite nicely and give good esti-
mates for the string tension, an analytic description would be preferable instead
of these solely numerical results. In order to gain some insight into the quark-
antiquark potential and the corresponding energy densities of the gluon �elds,
in 1987 C. Michael invented lattice sum rules [21]. These connect the quark-
antiquark potential with the expectation values of the energy in the gluon �elds;
even a separation of the electric and magnetic contributions is possible.

However, Michael's derivation was partly incorrect (see below); this was
pointed out by Dosch, Nachtmann and Rueter in 1995 [22]. Shortly afterwards
H. J. Rothe published a corrected version [23], and when Michael extended
his sum rules in 1996 [25], he took this correction into account. Additionally,
Rothe discovered that the trace anomaly of the energy momentum tensor gives
an important contribution to the quark-antiquark potential [24].

The main goal of this dissertation is a perturbative check of these sum rules.
In the following subsections, their derivations will be presented, based on [23],
[24] and [16]; then I will outline the problems with the sum rules which will be
investigated using perturbation theory and give an overview of my approach to
solve these problems. Some results will be presented for a general gauge group
G, but in most cases I will restrict myself to the commonly used group SU(N).
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1.3.1 The Wilson Loop and Wilson's Action

The starting point for the derivation of both sum rules is the standard formula
for the quark-antiquark potential V̂ :

V̂ (R̂) = � lim
T̂!1

1

T̂
ln < W (R̂; T̂ ) > : (1.1)

The Wilson loop W (R̂; T̂ ) is the path ordered product of the link variables Ul
along a closed rectangle C with spatial and temporal size R̂ and T̂ , respectively:

W (R̂; T̂ ) =
1

d(R)
Tr
Y
l2C

Ul: (1.2)

The link variables Ul are elements of the gauge group, and d(R) is the dimension
of the representation R of the group in which the sources of the gauge �eld are.
Usually the fundamental representation F is used; then d(R) = d(F ) = N for
the group SU(N).

Wilson introduced this loop in 1974 as an order parameter for Quantum
Chromodynamics [14]; a similar structure was already used in 1971 by F. J.
Wegner for the Ising model [18]. The derivation of the formula (1.1) which
connects the quark-antiquark-potential to the expectation value of the Wilson
loop can be found in [19] and in the review article [20], for example.

The potential and the size parameters of the Wilson loop are measured in
lattice spacings a:

R̂ =
R

a

T̂ =
T

a

V̂ = V � a: (1.3)

The expectation value in (1.1) is calculated with Wilson's action (the sum over
all plaquettes) in the quenched approximation (no dynamical fermions):

S = �̂
X
n;�;�

�
1�

1

2d(F )
Tr(U��(n) + U y��(n))

�
=: �̂P (1.4)

with the lattice coupling constant

�̂ =
2d(F )

g20
(1.5)

and the plaquette variables

U��(n) = U�(n)U�(n+ �̂)U y�(n+ �̂)U y� (n); (1.6)

where �̂ resp. �̂ are unit vectors pointing in the corresponding direction. The
sum in the action runs over all lattice sites n and all possible orientations of
the plaquettes.



1.3. SUM RULES FOR THE QUARK-ANTIQUARK-POTENTIAL 5

1.3.2 Action Sum Rule

Taking the derivative of (1.1) with respect to the logarithm of the coupling
constant, one arrives at:

@V̂

@ ln �̂
= �̂

@V̂

@�̂
= lim

T̂!1

1

T̂
< S >q�q�0; (1.7)

where for a general operator O, the expectation value in the quark-antiquark
state with respect to the vacuum state is de�ned as

< O >q�q�0=
< OW >

< W >
� < O > : (1.8)

Now the scaling behaviour (1.3) of the potential can be used. In the continuum
limit a ! 0, the physical potential V obviously should be independent of the
lattice spacing. This gives:

d

da

0@ V̂
�
R
a ; �̂

�
a

1A = 0 for a! 0: (1.9)

Carrying out the di�erentation, using the scaling behaviour of R̂, the de�nition
(1.5) and introducing the lattice beta function

�L(g0) = �a
@g0
@a

; (1.10)

one arrives at
2�L
g0

�̂
@V̂

@�̂
= V̂ + R̂

@V̂

@R̂
: (1.11)

Using this in (1.7), the result is:

V̂ + R̂
@V̂

@R̂
=

2�L
g0

lim
T̂!1

1

T̂
< S >q�q�0 : (1.12)

This is essentially the action sum rule for the quark-antiquark potential which
was derived by H. J. Rothe in 1995 [23].

As already pointed out, Michael derived this sum rule �rst (in 1987, [21]),
but instead of (1.11), he used a wrong scaling behaviour for the potential, and
therefore in his �nal formula, the logarithmic derivative of the potential with
respect to R̂ was missing. For a con�ning potential, V̂ � �R̂, this is crucial:
using the correct sum rule, the left hand side gives 2V̂ , whereas Michael's wrong
sum rule only had V̂ and therefore was wrong by a factor of 2.

On the other hand, in his 1987 paper, Michael claimed that the expectation
value < S >q�q�0 on the right hand side can be further simpli�ed in the limit
T̂ ! 1 (for a more detailed derivation, using transfer matrix methods, see
[29]): plaquettes on di�erent time slices should give the same contribution to
the expectation value, so that

< S >q�q�0! T̂ < L(t) >q�q�0; (1.13)
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where L(t) is the sum over all plaquettes at a �xed time slice t:

L(t) = �̂
X
~n;�;�

�
1�

1

2d(F )
Tr(U��(~n; t) + U y��(~n; t))

�
: (1.14)

Obviously this is the Lagrangian at time t.
Therefore the action sum rule becomes:

V̂ + R̂
@V̂

@R̂
=

2�L
g0

lim
T̂!1

< L(t) >q�q�0 : (1.15)

Rothe noticed 1995 [24] that this can be rewritten using the trace anomaly
of the energy momentum tensor. This was motivated by Ji's observation that
this trace anomaly contributes 1/4 of the hadron masses [26]. Already in 1977
it had been shown by Collins, Dunkan and Joglekar [27] that the trace of the
energy momentum tensor in the continuum formulation of SU(N) gauge theory
is given by

T �
� =

�(g)

2g
FA
��F

��;A =
2�(g)

g
L (1.16)

in the quenched approximation, where L is the Lagrangian density, which is
exactly the combination appearing in the formula above. In 1992, Caracciolo,
Menotti and Pelisetto showed that this is also true in lattice perturbation theory
[28]. Using this one �nally gets for the action sum rule:

V̂ + R̂
@V̂

@R̂
= lim

T̂!1

X
~x;�

< T��(~x; t) >q�q�0 : (1.17)

1.3.3 Energy Sum Rule

In order to derive the energy sum rule, one has to use an anisotropic lattice
with lattice spacing at in the temporal direction. The anisotropy parameter is
de�ned as

� := at=a:

Then the action has to be rewritten:

S = �̂s
X
n;j;k

�
1�

1

2d(F )
Tr(Ujk(n) + U yjk(n))

�

+�̂t
X
n;j

�
1�

1

2d(F )
Tr(Uj4(n) + U yj4(n) + U4j(n) + U y4j(n))

�
=: �̂sPs + �̂tPt; (1.18)

where one has to use di�erent coupling constants for the spatial and the tem-
poral plaquettes.

In the continuum limit, the expectation value of the Wilson loop should
be independent of the asymmetry, as long as the extension in the temporal
direction is the same:

< W (R̂; T̂ ) >�=1=< W (R̂; �T̂ ) >� for a! 0;
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and accordingly

V̂ (R̂; �̂) = � ~V (R̂; �̂s(�); �̂t(�))

with
~V (R̂; �̂s(�); �̂t(�)) = � lim

�T̂!1

1

�T̂
ln < W (R̂; �T̂ ) > :

It follows that in the continuum limit

d

d�

h
� ~V (R̂; �̂s(�); �̂t(�))

i
= 0 (1.19)

should be satis�ed. Carrying out the di�erentation and then returning to the
isotropic lattice by setting � = 1, one arrives at:

V̂ (R̂; �̂) = � lim
T̂!1

1

T̂

"
@�̂t
@�

< Pt >q�q�0 +
@�̂s
@�

< Ps >q�q�0

#
�=1

: (1.20)

With the abbreviations

�� :=
1

2

"
@�̂t
@�

�
@�̂s
@�

#
�=1

; (1.21)

this can be rewritten as

V̂ (R̂; �̂) = lim
T̂!1

1

T̂
[�� < �Pt + Ps >q�q�0 ��+ < Pt + Ps >q�q�0] :

In [42], Karsch had shown that

�+ = �
1

4

2�L(g0)

g0
�̂ (1.22)

by requiring that the string tension calculated from space-time-like Wilson loops
should be identical to the one calculated from purely spatial ones. Hence the
potential becomes:

V̂ (R̂; �̂) = lim
T̂!1

1

T̂

�
�� < �Pt + Ps >q�q�0 +

1

4

2�L(g0)

g0
�̂ < Pt + Ps >q�q�0

�
;

where obviously the second term contains the expectation value of the action:

V̂ (R̂; �̂) = lim
T̂!1

1

T̂

�
�� < �Pt + Ps >q�q�0 +

1

4

2�L(g0)

g0
< S >q�q�0

�
: (1.23)

This is essentially the energy sum rule which Rothe derived in [23]. Using the
relation between the action and the trace of the energy momentum tensor, it
can be rewritten as

V̂ (R̂; �̂) = lim
T̂!1

24�� 1

T̂
< �Pt + Ps >q�q�0 +

1

4

X
~x;�

< T��(~x; t) >q�q�0

35 :
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On the other hand, Karsch [42] showed that in the continuum limit (g0 ! 0):

�� ! �̂;

and if one again assumes that the expectation value for plaquettes on di�erent
time slices is identical for large T̂ , one can rewrite the �rst expectation value:

lim
T̂!1

1

T̂
< �Pt + Ps >q�q�0= lim

T̂!1
< �P 0t(t) + P

0
s(t) >q�q�0;

where P 0s;t(t) is the sum over all spatial respectively temporal plaquettes on the
�xed time slice t. Therefore in the continuum limit, the �rst term on the right
hand side of (1.23) reduces to:

lim
T̂!1

��
1

T̂
< �Pt + Ps >q�q�0! a

X
~x

a3
1

2
lim
T̂!1

< � ~E2(~x) + ~B2(~x) >q�q�0;

(1.24)
which is just the euclidean version of the energy in the gluon �elds. Hence the
energy sum rule tells us that the potential energy of the quark-antiquark pair
is given by:

energy in the gluon �elds +
1

4
trace anomaly of the energy momentum tensor:

An especially interesting case to look at is a purely con�ning potential:

V̂ (R̂) = �R̂:

From the action sum rule, one can deduce that

lim
T̂!1

X
~x;�

< T��(~x; t) >q�q�0= V̂ + R̂
@V̂

@R̂
= 2V̂ ;

hence the energy sum rule gives:

1

2
V̂ = � lim

T̂!1
��

1

T̂
< �Pt + Ps >q�q�0 :

Therefore for a con�ning potential, the contributions from the energy in the
gluon �elds and from the trace anomaly of the energy-momentum-tensor have
the same magnitude: both account for exactly one half of the total potential
energy.

1.4 Problems with the Sum Rules

The main goal of this work is to check the lattice sum rules. This is necessary
because of several reasons: �rst, neither for the argument leading to the restric-
tion to one �xed time slice, nor for the scaling arguments on the anisotropic
lattice, it is known if they are justi�ed. Hence their validity should be checked.

But beyond these validity doubts, there are also other reasons to take a
closer look at the sum rules. Because of the opposite signs of the magnetic
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and electric �eld energies in the euclidean formulation, cancellations between
these two contributions can occur when their expectation values are calculated
in Monte Carlo simulations. These cancellations are a possible source of errors;
a more thorough investigation of what happens there exactly should be helpful.
Additionally, it would be interesting to see how do the contributions of the trace
anomaly of the energy-momentum tensor look like.

There are in principle two ways to check the sum rules and to examine
these interesting details. On the one hand, one could perform Monte Carlo
simulations. Using these, one could investigate the physically interesting region
where the coupling constant is large. But there are some drawbacks, too: much
computer power and time is needed for these simulations, and the results are
not very enlightening in general; numerical results do not tell as much about
the underlying physics than analytical calculations.

Because of these reasons, in this work lattice perturbation theory is used to
study the sum rules. Obviously this is only possible for weak coupling, hence
the physically interesting and relevant region is missed. But this is countered
by the fact that much less computer power and time is needed (only some
low-dimensional numerical integrals in momentum space have to be done). Ad-
ditionally, one gets analytical results, which are expected to shed some light on
the problems mentioned above.

The Feynman rules for lattice perturbation theory are well-known and can
be taken, for example, from [16]; there the necessary weak coupling expansion
of the action is also explained in detail. The consistency of these perturbative
calculations, a general power counting theorem, and considerations about the
continuum limit can be found in [38]. The last necessary ingredient for the
check of the sum rules in the weak coupling approximation is an expression for
the potential up to next-to-leading order, which is provided in [39].

The outline of the check is as follows: �rst, I will explain how one obtains a
weak coupling expansion of the quark-antiquark potential in lattice perturba-
tion theory; I will outline an approach by Kovacs to this problem [30] as well as
the methods used by Heller and Karsch, already mentioned above [39]. In the
same chapter, I will prove additionally the transversality of the gluonic vacuum
polarization, which appears in the calculation of the potential.

Then I will turn to the check of the action sum rule. In principle the validity
of this sum rule is clear - after all, it is more or less an identity. Nevertheless,
it seemed to be an easier task to check it rather than the energy sum rule,
and it provides an opportunity to demonstrate some of the necessary methods.
Additionally, it will turn out that this sum rule is closely connected with the
gauge invariance of the Wilson loop|only some small additional calculations
will be needed to check this gauge invariance, too. And there is one part of the
action sum rule for which a check is really needed: the validity of the restriction
to one time slice, which was already mentioned above, is not clear at all even
for the action sum rule.

Finally the energy sum rule also has to be checked. Many results of the check
of the action sum rule will become useful there (a further reason to check that
sum rule �rst), hence this check will be easier than the check of the action sum
rule, although it looks more complicated at �rst sight. After the check, I will
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explain how one can derive results about the sizes of the various contributions to
the potential (electric, magnetic, anomal) from my calculations and the energy
sum rule. I will close that chapter again with a section on the restriction to one
time slice.

The last chapter contains a summary and the conclusions. In the appendix,
useful formulas are summarized, and some basic calculations are presented. A
detailed account of the Fourier transformation needed in chapter 2 for calculat-
ing the potential can also be found there.



Chapter 2

The Quark-Antiquark
Potential

In this chapter, I will line out how one can calculate the static quark-antiquark
potential on the lattice, which is needed in order to check the sum rules. First I
will give a general derivation, based on the running of the coupling constant and
renormalization group arguments (for more details, see [30]), then I will discuss
how one can derive these results directly by a perturbative lattice calculation.
Additionally, I will prove that the gluonic vacuum polarization is transversal in
leading order of the lattice perturbation theory.

2.1 The running coupling constant

In leading order, the quark-antiquark potential is given by:

V (R) = �
g2

4�R
C2(F ); (2.1)

where g is the coupling constant of the strong interaction and C2(F ) the
quadratic Casimir operator of fundamental representation F ; for SU(N):

C2(F ) =
N2 � 1

2N
: (2.2)

If one takes into account that the coupling constant depends also on the
distance between the quark and the anti-quark ("running coupling constant"),
then the formula above needs corrections:

V (R) = �
g2(R)

4�R
C2(F ) = �

g2

4�R
C2(F ) +O(g4): (2.3)

There are various methods to calculate these corrections. In [35], they were
determined in momentum space, using dimensional regularization and the �MS
renormalization scheme (modi�ed minimial subtraction: not only the pole in �
is subtracted, but also terms of ln 4�). The result is:

V (~q2) = �
g2�MS

(�2)

~q2
C2(F )

"
1 + g2�MS(�

2)�0

 
ln
�2

~q2
� 
 +

31

33

!#
: (2.4)

11
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Here the Feynman gauge (gauge parameter � = 1) and the quenched approx-
imation (number of dynamic fermions nf = 0) was used. g �MS is the coupling
constant de�ned in the �MS scheme, � a mass parameter which has to be intro-
duced during renormalization, 
 � 0:577216 is the Euler-Mascheroni constant
and �0 the �rst coeÆcient in the expansion of the beta function:

�0 =
11C2(G)

48�2
; (2.5)

where C2(G) = N is the quadratic Casimir operator of SU(N) in the adjoint
representation.

From this one can get an expression for the potential which should result
from lattice calculations by using the relation between g �MS and the coupling
constant g0(a) appearing in perturbative calculations on the lattice. This is
done in two steps; �rst the following relation can be used:

g2MS(�
2) = g2MOM(�2)

�
1�

A(�; nf ; N)

4�
g2MOM (�2) +O(g4)

�
;

where gMS and gMOM are the coupling constants de�ned in the MS and
MOM (momentum-space subtraction) renormalization scheme, respectively.
A(�; nf ; N) was determined in [31] for various values of the gauge parameter �
and numbers of dynamical fermions nf ; the value A(1; 0; N) which is relevant
here is given by:

A(1; 0; N) =
C2(G)

2�

�
�
11

6

 +

11

6
ln 4� +

23

6
+

1

36
I

�
with

I = �2

1Z
0

lnx

x2 � x+ 1
� 2:3439072:

But here g �MS is needed; for this one obtains:

g2�MS(�
2) = g2MOM (�2)

"
1�

�A(1; 0; N)

4�
g2MOM (�2) +O(g4)

#
(2.6)

with

�A(1; 0; N) = A(1; 0; N)�
11C2(G)

12�
ln 4� =

C2(G)

2�

�
�
11

6

 +

23

6
+

1

36
I

�
: (2.7)

The second step is to connect gMOM (�2) with g0(a) in the continuum limit
a! 0 [32, 33]:

g2 �MOM (�2) = g20(a)

"
1 + g20(a)

 
�0 ln

�2

a2�2
+R(N)

!
+O(g4)

#
; (2.8)

with

R(N) = C2(G)

�
1

48�2

�
23� 22 ln� +

1

6
I

�
+ 2P

�
�

1

8N

= C2(G)

�
1

48�2

�
23� 22 ln� +

1

6
I

�
+ 2P �

1

8

�
+
1

4
C2(F ); (2.9)
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where I is de�ned as above and P � 0:0849780.
Putting everything together, the result for the potential in momentum space

is:

V (~q2) = �
g20(a)

~q2
C2(F )

�

"
1 + g20(a)

"
�0

 
ln

�2

a2~q2
� 
 +

31

33

!
�

�A(1; 0; N)

4�
+R(N)

##
:

In order to get the potential in coordinate space, one has to do a Fourier trans-
formation (for details, see appendix D):

V (R) = �
g20(a)

4�R
C2(F )

�

"
1 + g20(a)

"
�0

 
ln
�2R2

a2
+ 
 +

31

33

!
�

�A(1; 0; N)

4�
+R(N)

##
;

hence the potential, measured in lattice spacings, is:

V̂ (R̂) = �
g20(a)

4�R̂
C2(F ) (2.10)

�

"
1 + g20(a)

"
2�0 ln

�
�e
=2+31=66R̂

�
�

�A(1; 0; N)

4�
+R(N)

##
:

Inserting the explicit expressions for �A(1; 0; N) and R(N) given above, one
�nally arrives at:

V̂ (R̂) = �
g20(a)

4�R̂
C2(F ) (2.11)

�

�
1 + g20(a)

�
2�0 ln

�
e
+31=66+48�2P=11�3�2=11R̂

�
+
1

4
C2(F )

��
� �

g20(a)

4�R̂
C2(F )

�
1 + g20(a)

�
11

24�2
C2(G) ln

�
7:501R̂

�
+
1

4
C2(F )

��
or

V̂ (R̂) � �
g20(a)

4�R̂
C2(F )

h
1 + 2g20(a)�0 ln

�
7:501eC2(F )=8�0R̂

�i
= �

g20(a)

4�R̂
C2(F )

h
1 + 2g20(a)�0 ln

�
7:501e3�

2(N2�1)=11N2
R̂
�i

= �
g20(a)

4�R̂

8<:
3
4

h
1 + 2g20(a)�0 ln

�
56:47R̂

�i
SU(2)

4
3

h
1 + 2g20(a)�0 ln

�
82:07R̂

�i
SU(3)

(2.12)

Alternatively, one can express these results by using the QCD scale param-
eters � of the di�erent renormalization schemes; the following relations hold
[31, 32, 33]:

�A(1; 0; N)

4�
= 2�0 ln

�MOM

� �MS

R(N) = 2�0 ln
�MOM

��L
: (2.13)
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With this, one can write for the potential

V̂ (R̂) = �
g20(a)

4�R̂
C2(F )

"
1 + 2g20(a)�0 ln

 
e
=2+31=66� �MS

�L
R̂

!#

� �
g20(a)

4�R̂
C2(F )

�
1 + 2g20(a)�0 ln

�
2:135

� �MS

�L
R̂

��
: (2.14)

The ratio of the scale parameters is:

� �MS

�L
�

(
26:45 SU(2)
38:45 SU(3)

(2.15)

These expressions for the potential agree with results from Monte Carlo
simulations [30], as well as with a perturbative calculation on the lattice [39].
Additionally, the potential shows the right scaling behaviour, compared with
(1.11).

In some older publications, one can �nd the following simpler expression for
the potential instead of the one derived above [34]:

V̂ (R̂) = �
g20(a)

4�R̂
C2(F )

h
1 + 2g20(a)�0 ln R̂

i
; (2.16)

the (big) factor 2:135
� �MS
�L

in the logarithm is missing there completely! There
are two reasons for this:

1. The contribution from the tadpole graph in the gluonic vacuum polar-
ization was left out by these authors; therefore the term proportional to
C2(F )

2 is missing. That term contributes a factor 7:529 (SU(2)) or 10:942
(SU(3)), respectively, in the logarithm.

2. For the ultraviolet and infrared cuto�s, they used only rough approxima-
tions, choosing them idential to a and R, respectively; hence the ratio
of the cuto�s is identical to R̂ in their results. In contrast, the correct
calculation yields an additional factor of 7.501 in the logarithm.

2.2 Weak coupling expansion on the lattice

A weak coupling expansion of the quark-antiquark potential on the lattice was
done �rst by Heller and Karsch in 1985 [39]. Their methods and results are
summarized in this section for future reference.

As already mentioned in the introduction, the quark-antiquark potential
can be derived from the expectation value of the Wilson loop:

V̂ (R̂; �̂) = � lim
T̂!1

1

T̂
ln < W (R̂; T̂ ) >subtr; (2.17)

with

W =
1

d(F )
Tr
Y
l2C

Ul: (path ordered) (2.18)
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The subscript "subtr" means that in order to get the correct potential from the
formula above, one has to subtract the self energy contributions to the quarks.
This subscript will be omitted in most places in the following.

The rectangular curve C is chosen to have the corners n0, n0 + R̂�̂, n0 +
R̂�̂ + T̂ �̂, n0 + T̂ �̂, where �̂ and �̂ are the unit vectors in one spatial and the
temporal direction of the lattice, respectively. The link variables are connected
with the vector potential by the following relation:

Ul = eig0Al : (2.19)

Using the Baker-Hausdorf formula repeatedly, one then arrives at the fol-
lowing expression for W :

W =
1

d(F )
Tr exp

24ig0X
l

Al �
1

2
g20
X
l1<l2

[Al1 ; Al2 ]�
1

4
ig30

X
l1<l2<l3

[[Al1 ; Al2 ]; Al3 ]

�
1

12
ig30

X
(l1;l2)<l3

[Al1 ; [Al2 ; Al3 ]]�
1

12
ig30

X
l1<l2

[[Al1 ; Al2 ]; Al2 ] +O(g40)

35 ;
where Al is given by:

Al = A�(n) for l = (n; n+ �̂)

Al = �A�(n� �̂) for l = (n; n� �̂):

Expanding the exponential and taking the trace, one obtains the perturbative
expansion for the Wilson loop:

W = 1� g20!
(2) � g30!

(3) � g40!
(4) +O(g50) (2.20)

with

!(2) =
1

4d(F )

 X
l

AA
l

!2

(2.21)

!(3) =
i

6d(F )
Tr

 X
l

Al

!3

+
i

2d(F )
Tr

0@X
l

Al

X
l1<l2

[Al1 ; Al2 ]

1A (2.22)

!(4) = �
1

24d(F )
Tr

 X
l

Al

!4

�
1

8d(F )
Tr

0@X
l1<l2

[Al1 ; Al2 ]

1A2

�
1

4d(F )
Tr

0@X
l

Al

X
l1<l2<l3

[[Al1 ; Al2 ]; Al3 ]

1A
�

1

12d(F )
Tr

0@X
l

Al

X
(l1;l2)<l3

[Al1 ; [Al2 ; Al3 ]]

1A
�

1

12d(F )
Tr

0@X
l

Al

X
l1<l2

[[Al1 ; Al2 ]; Al2 ]

1A
�

1

4d(F )
Tr

0@ X
l

Al

!2 X
l1<l2

[Al1 ; Al2 ]

1A : (2.23)
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For doing explicit calculations with these expressions, it is convenient to split
!(4) up into its parts in the following way:

!(4) = �!(4A) � : : :� !(4F ): (2.24)

Additionally, in order to calculate the expectation value of the Wilson loop,
one needs a perturbative expansion for the action. Expectation values are
calculated in the usual way:

< O >=

R
DUOe�SR
DUe�S

; (2.25)

where S is Wilson's action (1.4) and the integral runs over all elements U of the
gauge group. Carrying out the Faddeev-Popov gauge �xing and rewriting the
integration measure using the vector potential AA

� , one arrives at the following
perturbative expansion (see, for example, [16]):

Seff = S(0) + g0S
(1) + g20S

(2) + g20S
(2)
FP + g20S

(2)
meas +O(g30): (2.26)

S(1) gives the three-gluon, S(2) the four-gluon vertex; S(FP ) comes from the
Fadeev-Popov determinant, and S(meas) from the transformation of the inte-
gration measure. S(0) is the term of order g00 , which is quadratic in the gauge
�elds:

S(0) = �
1

2

Z
BZ

X
�;�

d4p

(2�)4
ÂA
� (�p)

�
p̂2Æ�� �

�
1�

1

�

�
p̂�p̂�

�
ÂA
� (p): (2.27)

Here, � is the usual gauge parameter; for all the results summarized below, the
Feynman gauge � = 1 had been used. The subscript BZ denotes the region of
integration: the �rst Brillouin zone, all components of p run from �� to +�.
Additionally, the following standard abbreviations were introduced above:

p̂� = 2 sin(p�=2)

p̂2 =
4X

�=1

p̂2�: (2.28)

Note also that the sum over the Lorentz indices � and � was explicitly written
out, i. e. the usual sum convention is not used in this work: Repeated indices
only have to be summed if this is explicitly denoted.

Now the expectation value of an operator becomes:

< O > =

R
DA O e�SeffR
DA e�Seff

=

R
DA O e�S

(0)R
DA e�S

(0)
(1 +O(g0))

=: < O >0 +O(g0); (2.29)

and the free gluon propagator is given by

< AA
� (p)A

B
� (q) >0 = ÆAB(2�)4Æ(p+ q)

Æ�� �
�
1� 1

�

�
p̂�p̂�
p̂2

p̂2
(2.30)

= ÆAB(2�)4Æ(p+ q)
Æ��
p̂2

(Feynman gauge):
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The explicit expressions for the other coeÆcients in the expansion of the
action can also be found partly in [39] (but notice that the action is de�ned
there with just the opposite sign in comparison to the convention here!); for the
three- and four-gluon vertices, see [36] or [37]. A more modern version, better
suited for calculations, is given in [16].

2.2.1 Leading order

Using the formula (1.1) and the expansion of the Wilson loop outlined above,
one gets in leading order:

V̂ = g20 lim
T̂!1

1

T̂
< !(2) >0;subtr; (2.31)

with

< !(2) >0 (2.32)

= 2C2(F )

Z
BZ

d4p

(2�)4
sin2(p�R̂=2) sin

2(p� T̂ =2)

p̂2

 
1

sin2(p�=2)
+

1

sin2(p�=2)

!
:

For a detailed derivation of this expression, see appendix B. As mentioned
above, subtr means that the self-energy contributions have to be subtracted. �
and � represent here the spatial respectively temporal direction of the Wilson
loop; these are di�erent, �xed indizes and are not summed over. Because of
the symmetry of the lattice, these two indices can be chosen arbitrarily without
changing the result.

In this order, the potential can be calculated exactly. First, perform the
limit T̂ !1. The following relations hold:

lim
T̂!1

1

T̂

sin2(p�R̂=2) sin
2(p� T̂ =2)

sin2(p�=2)
= 0

lim
T̂!1

1

T̂

sin2(p�R̂=2) sin
2(p� T̂ =2)

sin2(p�=2)
= 2�Æ(p�):

With this one gets:

V̂ = 2C2(F )g
2
0

Z
BZ

d3p

(2�)3
sin2(p�R̂=2)

~̂p
2 ; (2.33)

where
~̂p
2
=
X
�6=�

p̂2�;

hence

V =
2C2(F )g

2
0

a

Z
BZ

d3p

(2�)3
sin2(p�R̂=2)

~̂p
2

= 2C2(F )g
2
0

�=aZ
��=a

d3p0

(2�)3
sin2(p0�R=2)

4
a2
P

�6=� sin
2(p0�a=2)

:
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In the continuum limit a ! 0, the integral gets its main contributions for
p0�a � 0. Hence one can expand the sines in the denominator: sin2 (p0�a=2)) �
1
4p
02
� a

2. The integration limits ��=a go to �1 in the limit a ! 0. Therefore
one gets:

V = 2C2(F )g
2
0

1Z
�1

d3p0

(2�)3
sin2(p0�R=2)P

�6=� p
02
�

: (2.34)

Now use the relation Z 1

0
dte�tx =

1

x
;

with this one can write:

V = 2C2(F )g
2
0

1Z
�1

d3p0

(2�)3

Z 1

0
dt sin2(p0�R=2)e

�t
P

�6=�
p02
�

= 2C2(F )g
2
0

Z 1

0
dt

1Z
�1

dp0�
2�

sin2(p0�R=2)e
�tp02

�

0@ 1Z
�1

dx

2�
e�tx

2

1A2

=
1

2�
C2(F )g

2
0

Z 1

0

dt

t

1Z
�1

dp0�
2�

sin2(p0�R=2)e
�tp02

�

=
1

4�
C2(F )g

2
0

Z 1

0

dt

t

1Z
�1

dp0�
2�

(1� eip
0
�R)e�tp

02
� :

After completing the square in the exponent, the integral over p0� can be done:

V =
1

8�3=2
C2(F )g

2
0

Z 1

0

dt

t3=2
(1� e�R

2=4t):

Only the second term depends on R; the �rst gives an in�nite contribution
which is independent of R|hence it is the self energy contribution (this can
also be seen by a close inspection of the graphs contributing to < !(2) >0).
After subtracting it, what remains is:

V = �
g20

8�3=2
C2(F )

Z 1

0

dt

t3=2
e�R

2=4t

= �
g20

4�3=2R
C2(F )

Z 1

0
dxe�x

2
= �

g20
4�3=2R

C2(F )

Z 1

�1
dxe�x

2

= �
g20
4�R

C2(F ): (2.35)

Hence indeed one recovers the correct formula for the potential in leading
order from lattice perturbation theory.

2.2.2 Next-to-leading order

In next-to-leading order, there are several di�erent contributions to the expec-
tation value of the Wilson loop:

< W >= 1� g20 : : : + g40 < !(3)S(1) >conn �g
4
0 < !(4) >0 �g

4
0WV P +O(g60);

(2.36)
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(note the di�erent sign for the !(3)-term, compared to [39]) where the subscript
"conn" means that one has to consider only the connected graphs contributing
to the expectation value, and WV P stands for the contributions to < W >
coming from the vacuum polarization graphs:

WV P = � < !(2)S(2) >conn + < !(2) 1

2

�
S(1)

�2
>conn � < !(2)S

(2)
FP >conn

� < !(2)S(2)
meas >conn (2.37)

= 2C2(F )

Z
BZ

d4p

(2�)4
sin2(p�R̂=2) sin

2(p� T̂ =2)

(p̂2)2

�

 
���(p)

sin2(p�=2)
� 2

���(p)

sin(p�=2) sin(p�=2)
+

���(p)

sin2(p�=2)

!
: (2.38)

Again, the signs of three of the terms are opposite to the ones in [39] because
of the di�erent sign convention for the action.

The explicit contributions are, given here for future reference:

< !(3)S(1) >conn

= �C2(G)C2(F )

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2k̂2( dp+ k)2"(
sin2(p�R̂=2)

sin(p�=2)
sin(p� T̂ =2) cos(p�=2) sin((2p+ k)�=2)

�

 
sin(p� T̂ =2) sin((2p+ k)�=2)

sin(p�=2) sin(k�=2) sin((p+ k)�=2)
�

sin((2p+ k)� T̂ =2)

sin(k�=2) sin((p+ k)�=2)

!

+4
sin((k � p)�=2) cos((p+ k)�=2)

sin(p�=2) sin(k�=2) sin((p+ k)�=2)

� sin(p�R̂=2) sin(p� T̂ =2) sin((p+ k)� T̂ =2) sin(k�R̂=2)

� cos((p+ k)�R̂=2) cos(k� T̂ =2)

)
+

(
(�; R̂)$ (�; T̂ )

)#
(2.39)

Here again the same comment with respect to the sign as above applies.

For the calculation of < !(4) >, use the decomposition (2.24) and determine
each of the six contributions separately [40]:

< !(4A) >0 =

�
2C2(F )

2 �
1

3
C2(G)C2(F )

�
(2.40)" Z

BZ

d4p

(2�)4
sin2(p�R̂=2) sin

2(k� T̂ =2)

p̂2

 
1

sin2(p�)
+

1

sin2(p�)

!#2

< !(4B) >0 = �
1

2
C2(G)C2(F )g

4
0

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
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1

p̂2k̂2

"(
sin2(p�R̂=2) sin

2(k� T̂ =2)

sin2(p�=2) sin
2(k�=2)

)
+
n
(�; R̂)$ (�; T̂ )

o #

�
N2 � 1

16
g40

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2k̂2

"(
1

2

sin2((p� + k�)R̂=2)

sin2(p�=2)

sin2((p� + k�)T̂ =2)

sin2(k�=2)

"
sin((p� � k�)R̂=2)

sin((p� + k�)R̂=2)
�
sin((p� � k�)=2)

sin((p� + k�)=2)

#2

+2
sin2((k� � p�)T̂ =2) sin

2(p�R̂=2) sin
2(k�R̂=2)

sin2(p�=2) sin
2(k�=2)

)

+
n
(�; R̂)$ (�; T̂ )

o #
(2.41)

< !(4C) >0 =
1

2
C2(G)C2(F )g

4
0

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2k̂2"(
sin(p�R̂=2)

sin(p�=2)
2 sin2(p� T̂ =2)(�1 � �2)

�
sin(p�R̂=2) sin

2(p� T̂ =2)

sin(p�=2)

sin(k�R̂=2) cos(k� T̂ )

sin(k�=2)

� (�R(�p�; k�)� �R(k�;�p�))

+
sin2(p�R̂=2) sin

2(p� T̂ =2)

sin2(p�=2)
�R(k�;�k�)

+
sin(p�R̂=2) sin

2(p� T̂ =2)

sin(p�=2)

sin(k�R̂=2) cos(k� T̂ )

sin(k�=2)
�R(�k�;�p�)

+
sin2(p�R̂=2) sin

2(p� T̂ =2)

sin2(p�=2)
�R(k�;�k�)

)
+
n
(�; R̂)$ (�; T̂ )

o
+2

sin2(p�R̂=2) sin
2(p� T̂ =2)

sin2(p�=2)
�T (k� ;�k�)

+
sin2(p�R̂=2) sin

2(p� T̂ =2)

sin2(p�=2)

sin2(k�R̂=2) cos(k� T̂ )

sin2(k�=2)

#
(2.42)

< !(4D) >0 =
1

6
C2(G)C2(F )g

4
0

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2k̂2"(
sin(p�R̂=2)

sin(p�=2)
sin2(p� T̂ =2)

� (�R(0;�p�) + �1 � �2 � �R(k� � p�;�k�))

+
sin(p�R̂=2)

sin(p�=2)
sin2(p�T=2)

� (�R(�p�; 0) + �1 � �2 � �R(�k�; k� � p�))
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+
sin2(p�R̂=2)

sin2(p�=2)
sin2(p� T̂ =2)

sin2(k� T̂ =2)

sin(k�=2)

+
sin(p�R̂=2)

sin2(p�=2)
sin2(p� T̂ =2)

sin2(k�R̂=2)

sin2(k�=2)

�
1 + cos(k� T̂ )

�
�
sin(p�R̂=2)

sin(p�=2)
sin2(p� T̂ =2)

sin(k�R̂=2)

sin(k�=2)
cos(k� T̂ )

(�R(�p�;�k�)� �R(�k�;�p�))

�
sin(p�R̂=2)

sin(p�=2)
sin2(p� T̂ =2)

sin(k�R̂=2)

sin(k�=2)
cos(k� T̂ )�R(�p�; k�)

�
sin(p2�R̂=2)

sin2(p�=2)
sin2(p� T̂ =2)�R(k�;�k�)

�
sin2(p�R̂=2)

sin2(p�=2)
sin2(p� T̂ =2)�R(k�;�k�)

)
+
n
(�; R̂)$ (�; T̂ )

o
+2

sin2(p�R̂=2)

sin2(p�=2)
sin2(p� T̂ =2)

sin2(k�R̂=2)

sin2(k�=2)

�2
sin2(p�R̂=2)

sin2(p�=2)
sin2(p� T̂ =2)�T (k� ;�k�)

�
sin2(p�R̂=2)

sin2(p�=2)
sin2(p� T̂ =2)

sin2(k�R̂=2)

sin2(k�=2)
cos(k� T̂ )

+2
sin2(p�R̂=2)

sin2(p�=2)
sin2(p� T̂ =2)

sin2(k� T̂ =2)

sin2(k�=2)
cos(k�R̂)

#
(2.43)

< !(4E) >0 =
1

6
C2(G)C2(F )g

4
0

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2k̂2"(
sin(p�R̂=2)

sin(p�=2)
sin2(p� T̂ =2)�R(�p�; 0)

�
sin(p�R̂=2)

sin(p�=2)
sin2(p� T̂ =2)�R(k�;�p� � k�)

+
sin(p�R̂=2)

sin(p�=2)
sin2(p� T̂ =2)�R(0;�p�)

�
sin(p�R̂=2)

sin(p�=2)
sin2(p� T̂ =2)�R(�p� � k�; k�)

+
sin2(p�R̂=2) sin

2(p� T̂ =2)

sin2(p�=2)
R̂+

sin2(p�R̂=2) sin
2(p� T̂ =2)

sin2(p�=2)
R̂

+
sin(p�R̂=2)

sin(p�=2)
sin2(p� T̂ =2)

sin(k�R̂=2)

sin(k�=2)

sin((p� + k�)R̂=2)

sin((p� + k�)=2)

� cos(k� T̂ )

)
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+

(
(�; R̂)$ (�; T̂ )

)
+ 2

sin2(p�R̂=2)

sin2(p�=2)
sin2(p� T̂ =2)T̂

#
(2.44)

and �nally, due to symmetry properties in the colour indices

< !(4F ) >0= 0: (2.45)

Here the functions � are the parts of the following functions ~� which are even
in p� ! �p�; k� ! �k�:

~�1 = eip�(R̂�1)=2
R̂�3X
x1=0

R̂�2X
x2=x1+1

R̂�1X
x3=x2+1

e�ip�x1eik�(x2�x3)

~�2 = eip�(R̂�1)=2
R̂�3X
x1=0

R̂�2X
x2=x1+1

R̂�1X
x3=x2+1

e�ip�x2eik�(x1�x3)

~�R(p�; k�) = e�ip�(R̂�1)=2e�ik�(R̂�1)=2
R̂�2X
x1=0

R̂�1X
x2=x1+1

eip�x1eik�x2 :

The explicit expressions are for R̂ > 2 [40]:

�1 = �
1

4
(R̂� 2)

sin(p�R̂=2)

sin(p�=2)
+
1

4

sin(p�(R̂� 2)=2)

sin(p�=2)

�
1

4

sin((k� � p�)(R̂� 2)=2) cos(k�(R̂ + 1)=2� p�)

sin((k� � p�)=2) sin
2(k�=2)

+
1

4

sin(p�(R̂ � 2)=2) cos(p� � k�)

sin(p�=2) sin
2(k�=2)

(2.46)

�2 = �
1

4

sin(p�(R̂ � 2)=2)

sin(p�=2)

cos(k� � p�=2)

sin(k�=2) sin((p� + k�)=2)

+
1

4

sin(k�(R̂� 2)=2)

sin2(k�=2)

cos((p� + k�)R̂=2 + k�=2� p�)

sin((p� + k�)=2)

+
1

4

sin((k� � p�)(R̂� 2)=2) cos(k�(R̂ + 2)=2� p�=2)

sin(p�=2) sin(k�=2) sin((k� � p�)=2)

�
1

4

sin(k�(R̂� 2)=2) cos((p� + k�)R̂=2 + k� � p�)

sin(p�=2) sin
2(k�=2)

(2.47)

For R̂ � 2, both of these functions vanish because of the constraints in the
sums. Additionally for R̂ > 1 one has:

�R(p�; k�) = Re ~�R(p�; k�)

=
1

2

sin(p�(R̂� 1)=2) sin(k�R̂=2� p�=2)

sin(p�=2) sin(k�=2)

+
1

2

sin((p� + k�)(R̂ � 1)=2) sin(p�=2)

sin((p� + k�)=2) sin(k�=2)

=
1

2

sin(p�R̂=2)

sin(p�=2)

sin(k�R̂=2)

sin(k�=2)
�
1

2

sin((p� + k�)R̂=2)

sin((p� + k�)=2)
(2.48)
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For R̂ = 1, this function also vanishes, again because of the constraints in the
sums. Obviously the function is also even under p� $ k�; therefore terms like

�R(p�; k�)� �R(k�; p�)

in the expressions (2.41) to (2.44) vanish.

Additionally, the part of ~�R which is odd under p� ! �p�; k� ! �k�
appears also several times in the expressions above (in < !4B) >0 and in <
!(3)S(1) >). It is given by:

OR(p�; k�) = Im ~�R(p�; k�) (2.49)

=
1

2

"
sin((p� + k�)(R̂� 1)=2)

sin((p� + k�)=2)

cos(p�=2)

sin(k�=2)

�
cos(k�R̂=2 � p�=2)

sin(k�=2)

sin(p�(R̂ � 1)=2)

sin(p�=2)

#

=
1

4

sin((p� � k�)=2)

sin(p�=2) sin(k�=2)

"
sin((p� + k�)R̂=2)

sin((p� + k�)=2)
�
sin((p� � k�)R̂=2)

sin((p� � k�)=2)

#
:

Obviously, OR(p�; k�) is also odd under p� $ k�.

Finally, the vacuum polarization is given by the sum of the following �ve con-
tributions, where the fourth and the �fth are unique to lattice perturbation
theory:

�gluonloop
�� =

1

2
C2(G)

Z
BZ

ddk

(2�)d
1

p̂2
� dp+ k

�2 �2Æ�� cos2(k�=2)� d2p+ k
�2

+
� d2k + p)

�
�

� d2k + p
�
�

X
�6=�;�

cos2(p�=2)

+2
� d2p+ k

�
�

� dk � p
�
�
cos((p� + k�)=2) cos(k�=2)

�
(2.50)

�gluontadpole
�� =

1

2d

�
2C2(F )�

1

3
C2(G)

� �
Æ�� p̂

2 � p̂�p̂�
�

+
1

6
C2(G)Æ��

�
(d+ 3)�0 + 1�

2

d
+ 3

�
�0 �

1

2d

�
cos(p�)

�

�
7�0 �

5

2d

�X
�

cos(p�)

#
(2.51)

�ghostloop
�� = �

1

2
C2(G)

Z
BZ

ddk

(2�)d
1

p̂2
� dp+ k

�2
�
2
� dp+ k

�
�
k̂� cos(k�=2) cos((p� + k�)=2)

�
(2.52)

�ghosttadpole
�� = �

1

4d
C2(G)Æ�� (2.53)

�measure
�� = �

1

12
C2(G)Æ�� : (2.54)
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For later convenience, the results are given here for an arbitrary numbers of
dimensions d. Additonally, the abbreviation

�0 =

Z
BZ

ddk

(2�)d
1

k̂2
(2.55)

has been introduced (compare appendix C).

It is not obvious how one could get an explicit expression for the potential
from these eight-dimensional integrals in momentum space, reproducing the
result (2.12). One way is to evaluate the integrals numerically; Heller and
Karsch did this already in their original paper [39] and �tted their results to
the following formula:

V̂ (R̂) = Vself �
4

3

g20
4�R̂

�
1 +

11

16�2
g20 ln(R̂M)2

�
:

Here the factor 4
3 comes from the quadratic Casimir operator C2(F ) for SU(3) in

the fundamental representation, the factor 11
16�2 comes from the �rst coeÆcient

of the beta function, and Vself denotes the contributions from the self energy.
Comparing with (2.12), one should get:

M = 82:07

respectively

lnM = 4:408:

The results Heller and Karsch obtained for lnM for R̂� 1 are consistent with
this prediction - a further veri�cation that (2.12) indeed gives the right result
for the quark-antiquark potential.

2.2.3 Transversality of the gluonic vacuum polarization

Using the results Heller and Karsch obtained for the vacuum polarization [39],
one can show that it is transversal even for �nite lattice spacing. This is not
crucial for this work, but an interesting result in itself. So far, the transversality
of the vacuum polarization, calculated in lattice perturbation theory, only had
been checked in the continuum limit [37].

The contribution proportional to C2(F ) of the vacuum polarization is ob-
viously transversal. For the contributions proportional to C2(G) it has to be
shown that X

�;�

p̂�p̂���� = 0; (2.56)

which proves the transversality. In order to show this, look at the various
contributions separately:

X
�;�

p̂�p̂��
gluonloop
�� = C2(G)g

2
0

�
p̂2
��

d�
1

2

�
�0 �

1

2
+

1

2d

�
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+
�
p̂2
�2 �

�
1

4

�
�0 �

1

2d

�
�
1

4
I

�
+ p̂4

1

4

�
�0 �

1

2d

��
(2.57)X

�;�

p̂�p̂��
gluontadpole
�� = C2(G)g

2
0

�
p̂2
�
(1� d)�0 +

7

12
�

7

12d

�

+
�
p̂2
�2 1

4

�
�0 �

1

2d

�
� p̂4

1

4

�
�0 �

1

2d

��
(2.58)X

�;�

p̂�p̂��
ghostloop
�� = C2(G)g

2
0

�
p̂2
�
�
1

2
�0 +

1

4d

�
+
�
p̂2
�2 1

4
I

�
(2.59)

X
�;�

p̂�p̂��
ghosttadpole
�� = C2(G)g

2
0

�
p̂2
�
�

1

6d

��
(2.60)

X
�;�

p̂�p̂��
measure
�� = C2(G)g

2
0

�
p̂2
�
�

1

12

��
: (2.61)

Here the abbreviation

I :=

Z
BZ

ddk

(2�)d

Z
BZ

ddq

(2�)d
Æ(d)(p+ k + q)

q̂2k̂2

was introduced. In the calculation, the following Ward identity for the three-
gluon vertex was used:X
�

p̂�����(p; q; k) = ig0(2�)
dÆ(d)(p+ q + k) (2.62)

�
h
cos(p�=2)(q̂

2Æ�� � q̂� q̂�)� cos(p�=2)(k̂
2Æ�� � k̂� k̂�)

i
:

Another useful formula which was needed here is:

p̂ k̂ cos((p+ k)=2) =
1

2

� d(p+ k)2 � p̂2 � k̂2
�
: (2.63)

For the evaluation of the other integrals appearing in the derivation, see ap-
pendix C.

Adding up all these contributions, everything cancels, and one arrives indeed
at the result that the vacuum polarization is transversal. Hence it can be written
in the following form:

���(p) =
�
Æ�� p̂

2 � p̂�p̂�
�
�(p): (2.64)

Additionally, one should show that the function �(p) is regular at p = 0
or alternatively that ���(0) = 0. For the contribution proportional to C2(F )
this is again obvious; and again the contributions proportional to C2(G) are
determined separately:

�gluonloop
�� (0) = C2(G)g

2
0Æ��

��
d�

1

2

�
�0 +

1

2d
�
1

2

�
(2.65)

�gluontadpole
�� (0) = C2(G)g

2
0Æ��

�
(d� 1)

�
��0 +

7

12d

��
(2.66)
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�ghostloop
�� (0) = C2(G)g

2
0Æ��

�
�
1

2
�0 +

1

4d

�
(2.67)

�ghosttadpole
�� (0) = C2(G)g

2
0Æ��

�
�

1

6d

�
(2.68)

�measure
�� (0) = C2(G)g

2
0Æ��

�
�

1

12

�
: (2.69)

Again, some of the integrals listed in appendix C were used. Adding everything,
one indeed arrives at the claimed result

���(0) = 0: (2.70)



Chapter 3

Action Sum Rule

In order to derive the action sum rule

V̂ + R̂
@V̂

@R̂
=

2�L
g0

lim
T̂!1

< L(t) >q�q�0; (3.1)

essentially three steps were needed:

1. Taking the logarithmic derivative of (1.1); this led to the identity (1.7).

2. Using the scaling behaviour of the potential; the result was (1.12).

3. Taking the limit of large T̂ and thereby restricting the sum over all pla-
quettes to one �xed time slice.

The explicit form of the potential up to next-to-leading order was already
derived in chapter 2; its easy to see that it has indeed the right scaling behaviour.
Hence only the �rst and the third step remain to be checked. As already pointed
out, the �rst step gives essentially an identity, so that in principle a check for
this is not needed.

Nevertheless, it is instructive to see how this identity looks like on the level of
Feynman graphs, and the results derived here will be helpful later. Additionally,
it will turn out that this identity is closely connected with the gauge invariance
of the Wilson loop, so that this invariance can also be checked perturbatively.

The �rst section will give an introduction and contains the necessary ex-
pansions; the second section will deal with the perturbative check of (1.7) up to
next-to-leading order. Then I will point out the connections to the gauge invari-
ance of the Wilson loop, and how this can be checked. Finally the restriction
to one �xed time slice will be examined.

3.1 Preliminaries

The identity (1.7), when inserting the de�nition (1.8) and the formula (1.1),
becomes

��̂
@

@�̂
lim
T̂!1

1

T̂
ln < W (R̂; T̂ ) >= lim

T̂!1

1

T̂

�
< SW >

< W >
� < S >

�
: (3.2)

27
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Obviously, this identity has to be satis�ed even for all �nite T̂ :

��̂
@

@�̂
ln < W (R̂; T̂ ) >=

< SW >

< W >
� < S > : (3.3)

Carrying out the derivative and multiplying by < W > gives:

��̂
@

@�̂
< W >=< SW > � < S >< W > : (3.4)

Now insert the relation (1.5) between the lattice coupling constant �̂ and the
coupling constant g0(a) appearing in perturbative lattice calculations; this �-
nally leads to:

g20
@

@g20
< W >=< SW > � < S >< W >=< SW >conn : (3.5)

That is the formula which will be checked perturbatively in the next section.

3.2 Perturbative check

3.2.1 Leading order

Using the expansions
S = S(0) +O(g0): (3.6)

and
W = 1� g20!

(2) +O(g30); (3.7)

(3.5) becomes
< !(2) >0=< !(2)S(0) >conn : (3.8)

The expectation value on the left hand side was already given in section 2.2.1:

< !(2) >0 (3.9)

= 2C2(F )

Z
BZ

d4p

(2�)4
sin2(12p�R̂) sin

2(12p� T̂ )

p̂2

 
1

sin2(12p�)
+

1

sin2(12p�)

!
;

this result was derived using Feynman gauge � = 1. In the following, if it is
not explicitly indicated otherwise, all expectation values will be calculated in
that gauge.

The easiest way to calculate the correlator on the right hand side of (3.8) is
to compute the correlator between two gauge �elds and the action �rst; this is
equivalent to the insertion of the action into a gluon line:

< AA
� (p)A

B
� (q)S >conn= ÆAB

Æ�� �
p̂�p̂�
p̂2

p̂2
(2�)4Æ(p+ q): (3.10)

This results hold for every gauge parameter �|hence inserting the action into a
gluon line with arbitrary gauge parameter simply gives a propagator in Landau
gauge � =1! Therefore the calculation of the correlator < !(2)S(0) >conn gives
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exactly the same result as if one would calculate the expectation value< !(2) >0

using the propagator in Landau gauge. For convenience, this expectation value
will now be calculated in an arbitrary gauge.

First, !(2) is given by:

!(2) =
1

4d(F )

 X
l

AA
l

!2

; (3.11)

with the sum along the Wilson loop:

X
l

AA
l =

R̂�1X
l=0

AA
� (n0 + l�̂) +

T̂�1X
l=0

AA
� (n0 + �̂R̂+ l�̂) (3.12)

�
R̂�1X
l=0

AA
� (n0 + �̂R̂+ �̂T̂ � l�̂)�

T̂�1X
l=0

AA
� (n0 + �̂T̂ � l�̂):

Expressing this in Fourier space, one gets:

X
l

AA
l = �2i

Z
BZ

d4p

(2�)4
sin(p�R̂=2) sin(p� T̂ =2)e

ipncA
A
� (p)(Æ�� � Æ��)

sin(p�=2)
; (3.13)

where
nc = n0 + �̂R̂=2 + �̂T̂ =2

is the center of the Wilson loop.
Hence calculating the expectation value, using the propagator (2.30), the

result is:

< !(2) >0;�

= �
1

d(F )

X
�;�

Z
BZ

d4p

(2�)4

Z
BZ

d4q

(2�)4
< AA

� (p)A
A
� (q) >0;� e

i(p+q)nc Æ�� � Æ��
sin(p�=2)

Æ�� � Æ��
sin(q�=2)

sin(p�R̂=2) sin(p� T̂ =2) sin(q�R̂=2) sin(q� T̂ =2)

= 2C2(F )
X
�;�

Z
BZ

d4p

(2�)4
sin2(p�R̂=2) sin

2(p� T̂ =2)

p̂2

Æ�� � Æ��
sin(p�=2)

Æ�� � Æ��
sin(p�=2)

�
Æ�� �

�
1�

1

�

�
p̂�p̂�
p̂2

�

= 2C2(F )

Z
BZ

d4p

(2�)4
sin2(12p�R̂) sin

2(12p� T̂ )

p̂2

�

 
1

sin2(12p�)
+

1

sin2(12p�)

!
= < !(2) >0;�=1 : (3.14)

Therefore the expectation value < !(2) >0 does not depend on the gauge pa-
rameter �, i. e., it is gauge invariant! Naively one could have expected this
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result, because the Wilson loop is de�ned in a gauge-invariant way. But gauge
transformations on the lattice are de�ned with respect to the link variables,
and it is not entirely clear what e�ects this can have in a weak-coupling expan-
sion. Hence it is nice to see that even in the limit of small coupling, the gauge
invariance is preserved. The close connection between the action sum rule and
the gauge invariance of the Wilson loop which becomes apparent here will be
discussed further in section 3.3.
Additionally, using this gauge invariance, it is obvious that indeed

< !(2) >0=< !(2)S(0) >conn

holds|hence the action sum rule is valid in leading order.

This validity as well as the gauge invariance of the Wilson loop in leading
order can also be expressed in diagrammatical form in the following way:

= � =1 = �

In these diagrams, a sum of the end points of the gluon line along the Wilson
loop as well as along the plaquette, and a sum over all possible positions and
orientations of the plaquette is to be understood. In the third graph, the gauge
parameter � can be arbitrary. Gluon lines without an explicit index � are in
Feynman gauge.

Another way to express this more concisely is to introduce the operator

G :=
1

2

Z
BZ

AA
� (p)p̂�p̂�A

A
� (�p); (3.15)

then one can write:

< AA(p)AB(q) >0;�=< AA(p)AB(q) >0 �

�
1�

1

�

�
< AA(p)AB(q)G >conn :

(3.16)
If one denotes the insertion of this operator into a gluon line by a cross, one
can also express this diagrammatically:

=
�

�
�
1� 1

�

�
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where again a gluon line without an explicit index represents a propagator in
Feynman gauge.

Now, using this notation, the gauge invariance of the Wilson loop in leading
order can be expressed in the following concise way:

< !(2)G >conn= 0; (3.17)

or again diagrammatically:

= 0.

3.2.2 Next-to-leading order

Taking the higher terms in the expansions of the Wilson loop

W = 1� g20!
(2) � g30!

(3) � g40!
(4) +O(g50) (3.18)

into account, one gets:

g20
@

@g20
< W >

= �g20 < !(2) >0 +2g
4
0 < !(2)S(2) >conn �g

4
0 < !(2)

�
S(1)

�2
>conn

+2g40 < !(2)S
(2)
FP >conn +2g

4
0 < !(2)S(2)

meas >conn �2g
4
0 < !(4) >0

+2g40 < !(3)S(1) >0 +O(g
5
0): (3.19)

For the right side of (3.5), the higher terms in the expansion of the action
have also to be used:

S = S(0) + g0S
(1) + g20S

(2) +O(g30):

The result is:

< WS > � < W >< S >

= �g20 < S(0)!(2) >conn +g
4
0 < S(0)S(2)!(2) >conn

�
1

2
g40 < S(0)

�
S(1)

�2
!(2) >conn +g

4
0 < S(0)S

(2)
FP!

(2) >conn

+g40 < S(0)S(2)
meas!

(2) >conn �g
4
0 < S(2)!(2) >conn

+g40 <
�
S(1)

�2
!(2) >conn �g

4
0 < S(1)!(3) >0 +g

4
0 < S(0)S(1)!(3) >conn

�g40 < S(0)!(4) >conn +O(g
6
0): (3.20)
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Figure 3.1: Contributions to the l.h.s. of (3.21)

Inserting this into the formula (3.5) and using the validity of the action sum
rule in leading order, one arrives at the following formula which has to be shown
to be true:

< S(0)S(2)!(2) >conn �
1

2
< S(0)

�
S(1)

�2
!(2) >conn + < S(0)S

(2)
FP!

(2) >conn

+ < S(0)S(2)
meas!

(2) >conn + < S(0)S(1)!(3) >conn � < S(0)!(4) >conn

=

+3 < !(2)S(2) >conn �2 < !(2)
�
S(1)

�2
>conn +2 < !(2)S

(2)
FP >conn

+2 < !(2)S(2)
meas >conn +3 < !(3)S(1) >0 �2 < !(4) >0 : (3.21)

Now one can use that the insertion of S(0) into a gluon line transforms the
propagator into Landau gauge. For every graph, one has to count the numbers
of gluons lines into which S(0) can be inserted; then one gets the following
simple results:

< S(0)!(2)S(2) >conn;�=1= 3 < !(2)S(2) >conn;�=1
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Figure 3.2: Contributions to the r.h.s. of (3.21)

< S(0)!(2)(S(1))2 >conn;�=1= 4 < !(2)(S(1))2 >conn;�=1

< S(0)!(2)S
(2)
FP >conn;�=1= 2 < !(2)S

(2)
FP >conn;�=1

< S(0)!(2)S(2)
meas >conn;�=1= 2 < !(2)S(2)

meas >conn;�=1

< S(0)!(3)S(1) >conn;�=1= 3 < !(3)S(1) >conn;�=1

< S(0)!(4) >conn;�=1= 2 < !(4) >�=1 : (3.22)

Inserting these expressions into (3.21), one sees that indeed the left hand side
is equal to the right hand side. Hence if one calculates every graph in Landau
gauge, the action sum rule is obviously valid up to next-to-leading order. But
this is not entirely satisfying, because the results for the potential in chapter
2, taken from [39], were calculated in Feynman gauge instead of Landau gauge;
and it will turn out later that checking the energy sum rule can also be done
much more easily in Feynman gauge.

Hence what is needed is either a check that the expectation value of the
Wilson loop is gauge invariant up to next-to-leading order, or an explicit check
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of (3.21) in the Feynman gauge. As will be explained in section 3.3, these two
are closely related; checking (3.21) will provide more than half of the check of
the gauge invariance already.

Therefore now (3.21) has to be checked. The relevant Feynman diagrams
contributing to the left and right hand side, respectively, are given in the �gures
3.1 and 3.2. There are essentially three types of graphs: vacuum polarization
graphs, one with a three-gluon vertex and one with two independent gluon
lines. For the last two, the end points of the gluon lines are not summed over
the entire Wilson loop; there are constraints: see the explicit form of !(3) and
!(4) given in section 2.2. In contrast, in the vacuum polarization graphs both
gluon end points are summed over the complete Wilson loop. Additionally,
in all of the graphs, a sum over all possible positions and orientations of the
plaquette is to be understood.

The vacuum polarization graphs can be grouped into two types again: the
ones where the action is inserted into an internal gluon line (the second and
fourth graph in �gure 3.1), and the ones where it is inserted into an external
line (the �rst, third, �fth, sixth and seventh graph). The second class includes
a gluon loop, a gluon tadpole, a ghost loop, a ghost tadpole and a contribution
coming from the integration measure; the latter two are special for lattice per-
turbation theory. These graphs can be dealt with easily if one uses the following
observation: X

l

< AlA
A
� (x)S

(0) >conn=
X
l

< AlA
A
� (x) >0;� : (3.23)

This means that even if only one end of the gluon line into which the action is
inserted is summed over the whole Wilson loop, while the other end is entirely
arbitrary, the result will be the same as if one would have used a gluon line
in an arbitrary gauge, but without the insertion. This can also be expressed
diagrammatically:

x

=

�

x

Using this, it becomes obvious that

< S(0)!(2)S(2) >conn = 2 < !(2)S(2) >conn + insertions into internal lines

< S(0)!(2)(S(1))2 >conn = 2 < !(2)(S(1))2 >conn + ins. into internal lines

< S(0)!(2)S
(2)
FP >conn = 2 < !(2)S

(2)
FP >conn

< S(0)!(2)S(2)
meas >conn = 2 < !(2)S(2)

meas >conn (3.24)

or, again with diagrams:
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= 2�

= 2�

and the same for the graphs with ghost lines and the graph with the insertion
of the contribution of the integration measure.

Then there are the graphs where the action is inserted into internal gluon
lines of the vacuum polarization. Taking them also into account, one can write:

< S(0)!(2)(S(1))2 >conn= 4 < (S(1))2!(2) >conn +� < (S(1))2!(2) >

< S(0)!(2)S(2) >conn= 3 < S(2)!(2) >conn +� < S(2)!(2) >; (3.25)

where the �-terms come from the operator G contained in the action. The
explicit results are:

� < (S(1))2!(2) >

= �4C2(G)C2(F )
X
�;�

Z
BZ

d4p

(2�)4
sin2(p�R̂=2) sin

2(p� T̂ =2)

p̂4
Æ�� � Æ��
sin(p�=2)

Æ�� � Æ��
sin(p�=2)Z

BZ

d4k

(2�)4
1

k̂4( dp+ k)2

"
( dp+ 2k)�( dp+ 2k)�

X



k̂2
 cos
2(p
=2)

+ Æ�� cos(k�=2) cos(k�=2)(( d2p + k)k̂)2

+ k̂�k̂� cos((k + p)�=2) cos((p+ k)�=2)( dk � p)2

�
X



k̂
( dk � p)
 cos(p
=2)[( dp + 2k)�k̂� cos((p+ k)�=2) + �$ �]

� k̂( d2p+ k)[( dp+ 2k)�k̂� cos(k�=2) cos(p�=2) + �$ �]

+ k̂( d2p+ k)[( dk � p)� cos(k�=2)k̂� cos((p+ k)�=2) + �$ �]

#
(3.26)

and

� < !(2)S(2) >
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= �C2(G)C2(F )
X
�;�

Z
BZ

d4p

(2�)4
sin2(p�R̂=2) sin

2(p� T̂ =2)

p̂4
Æ�� � Æ��
sin(p�=2)

Æ�� � Æ��
sin(p�=2)Z

BZ

d4k

(2�)4
1

k̂4

"
Æ��

�
2
X
�6=�

k̂2� cos
2(k�=2)� 4 cos2(k�=2)

X
�

sin2(p�=2)k̂
2
�

�
2

3
sin2(k�=2)p̂

2 + 2k̂2� cos
2(k�=2) sin

2(p�=2)

�
+ p̂�p̂�

�
4

3
sin2(k�=2) +

4

3
sin2(k�=2) � 2 sin2(k�=2) sin

2(k�=2)

�#
(3.27)

For the graph with the three-gluon vertex (the so-called "spider graph"),
one can make use of the fact that in !(3), one of the end points of the three gluon
lines is summed over the entire gluon loop, without any constraints. Therefore,
according to (3.23), an insertion of the action into this line just reproduces the
normal spider graph without the insertion, and one has to consider only the
e�ect of inserting the action into the other two lines. The result is, the �-term
again coming from the operator G contained in the action:

< S(0)!(3)S(1) >conn= 3 < !(3)S(1) >conn +� < !(3)S(1) >; (3.28)

with

� < !(3)S(1) >

= �2C2(G)C2(F )

Z
BZ

d4p

(2�)4

Z
BZ

d4q

(2�)4
sin(p�R=2) sin(p�T=2)

p̂2q̂4( dp+ q)2

�

"(
1

sin((p� + q�)=2)

 
cos(q�=2)

sin(p�=2)

X
�6=�

( d2p+ q)�q̂�

+
q̂�( dq + p)� cos(q�=2) cos(p�=2)

sin(p�=2)
+
cos(q�=2) cos((q� + p�)=2)q̂� p̂�

sin(p�=2)

!

�

 
sin(p�T=2) sin((p� + 2q�)=2)

"
sin((p� + 2q�)R=2)

sin((p� + 2q�)=2)
�
sin(p�R=2)

sin(p�=2)

#

+2 sin(q�T=2) sin((p� + q�)R=2) cos((p� + q�)T=2) cos(q�R=2)

!)

+

(
(�;R)$ (�; T )

)#
: (3.29)

For calculating the e�ect of inserting the action into the graph with two
independent gluon lines, it is convenient to split up !(4) as shown already in
(2.24) and treat the various terms separately. In !(4A), all end points of gluon
lines are summed over the entire Wilson loop, hence using (3.23), one gets:

< !(4A)S(0) >conn= 2 < !(4A) >0 : (3.30)

The other contributions are much more complicated. In !(4C) to !(4F ), at least
one of the end points of the gluon lines is summed over the entire Wilson loop,
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and therefore (3.23) can be used to simplify the calculation: insertions of the
action in that gluon line simply reproduce the same result as for the graph
without any insertions. In !(4B), even this simpli�cation is not possible.

The end result is, where again the �-terms come from the insertion of G

< !(4)S(0) >conn= 2 < !(4) > +� < !(4) >; (3.31)

respectively

< !(4B)S(0) >conn = 2 < !(4B) >0 +� < !(4B) >;

< !(4C)S(0) >conn = 2 < !(4C) >0 +� < !(4C) >;

: : : (3.32)

with:

� < !(4B) >

= �
C2(G)C2(F )

8
g40
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BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2k̂2

�
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� 4

k̂2�

k̂2

 �
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sin2(p�T=2)
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1

4
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2(k�=2)

�
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�
sin((p� � k�)R=2)

sin((p� � k�)=2)
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+
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(�;R)$ (�; T )

)#
(3.33)

� < !(4C) >

= �
C2(G)C2(F )
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d4p

(2�)4
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d4k
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p̂2k̂2

�

"(
4
k̂2�
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sin(k�=2)
cos(k�T )

k̂2�

k̂2
�R(p�; k�)
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�
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sin(k�=2)

sin(p�R=2)

sin(p�=2)

+2
cos(k�(R+ 1)=2)

sin(p�=2)

sin((p� + k�)(R � 1)=2)

sin((p� + k�)=2)

!)
+

(
(�;R)$ (�; T )
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(3.34)
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sin(p�T=2)

sin(p�=2)

sin2(k�R=2)

sin(k�=2)
sin(k�T=2)

k̂�k̂�

k̂2

�

 
sin(p�T=2)
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�
sin((p� + k�)T=2)

sin((p� + k�)=2)

!

�2 sin2(p�T=2)
sin2(p�R=2)

sin2(p�=2)

k̂2�

k̂2

 
sin2(k�T=2)

sin2(k�=2)
� T

!
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sin2(p�T=2) sin

2(p�R=2)

sin2(p�=2)
(Æ�� � Æ��)

sin2(k�R=2)

sin(k�=2)

sin2(k�T=2)

sin(k�=2)

k̂�k̂�

k̂2

+4 sin2(p�R=2)
sin2(p�T=2)

sin2(p�=2)

sin2(k�R=2)

sin2(k�=2)

k̂2�

k̂2

+4 sin2(p�T=2)
sin2(p�R=2)

sin2(p�=2)

sin2(k�T=2)

sin2(k�=2)
cos(k�R)

k̂2�

k̂2

�2 sin2(p�R=2)
sin2(p�T=2)

sin2(p�=2)

sin2(k�R=2)

sin2(k�=2)
cos(k�T )

k̂2�

k̂2

+2 sin2(p�T=2)
sin2(p�R=2)

sin2(p�=2)

sin2(k�R=2)

sin(k�=2)

sin2(k�T=2)

sin(k�=2)

k̂�k̂�

k̂2

#
(3.35)

� < !(4E) >

= �
C2(G)C2(F )

6
g40
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BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2k̂2

"(
sin(p�R=2)

sin(p�=2)
sin2(p�T=2)

�

 
1

4

sin(p�R=2)

sin(p�=2)
(2R+ T ) +

k̂2�

k̂2
sin(k�R=2)

sin(k�=2)

sin((p� + k�)R=2)

sin((p� + k�)=2)

�(cos(k�T )� 1) +
k̂�k̂�

k̂2
sin2(k�T=2)

sin(k�=2)
sin(k�R=2)

sin((p� + k�)R=2)

sin((p� + k�)=2)

!)

+

(
(�;R)$ (�; T )

)
+
1

2
sin2(p�T=2)

sin2(p�R=2)

sin2(p�=2)
T + 2

k̂�k̂�

k̂2
sin(p�T=2)

sin(p�=2)

� sin2(p�R=2)
sin2(k�R=2)

sin(k�=2)
sin(k�T=2)

sin((p� + k�)T=2)

sin((p� + k�)=2)

#
(3.36)

and �nally

� < !(4F ) >= 0; (3.37)

again because of symmetry properties in the colour indices. The functions �1,
�2 and �R can be found in section 2.2.2.
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Putting everything together, the result is:

� < !(4) >

=
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C2(G)C2(F )
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(2�)4
1
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�
sin(k�(R� 2)=2)

sin2(k�=2)
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+
sin((p� + k�)R=2)

sin((p� + k�)=2)

!

�
C2(G)C2(F )
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sin(p�=2)

�
sin2(k�T=2)

sin(k�=2)
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sin(p�=2)

cos(p�=2)

sin(k�=2)
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cos(k�R=2 + p�=2)

sin(k�=2)

sin((p� + k�)(R � 1)=2)
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sin(k�(R� 1)=2) sin(k�(R+ 1)=2)
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sin(p�=2)

+7
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+

(
(�;R)$ (�; T )

)
:

(3.38)

Looking again at (3.21), one sees now that

� < S(2)!(2) > �
1

2
� <

�
S(1)

�2
!(2) > +� < S(1)!(3) > �� < !(4) >= 0:

(3.39)
has to be satis�ed in order to show that (3.5) is true in next-to-leading order.

The only way to show this is to numerically evaluate the various eight-
dimensional integrals in momentum space for arbitrary R̂ and T̂ . Obviously
this would take a lot of computer time; in the light of the fact that (3.5) is
an identity and therefore in principle has not to be checked (as explained at
the beginning of the chapter, these calculations are mainly done for illustrative
purposes, and because the results will become useful later) this is not justi�able.
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Therefore only a check for the very special case R̂ = T̂ = 1 was done. Most
of the results above simplify signi�cantly then (for example, the functions �1,
�2, �R and OR vanish); most of the integrations can even be done almost
exactly, with only the one numerical constant �0 remaining.

But the contributions from � <
�
S(1)

�2
!(2) > and � < S(1)!(3) >, which

are now given by the following integrals

� <
�
S(1)

�2
!(2) >

����
R̂=T̂=1

= �2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2)2(k̂2)2( dp+ k)2" 
( dp+ 2k)2�

4X
�=1

k̂2� cos
2(p�=2) + cos2(k�=2)

�
( d2p+ k)k̂

�2
+k̂2� cos

2((p+ k)�=2)( dk � p)2

�2( dp+ 2k)�k̂� cos((p+ k)�=2)
4X

�=1

k̂�( dk � p)� cos(p�=2)

�2
h
( d2p+ k)k̂(( dp+ 2k)�k̂� cos(k�=2) cos(p�=2)

�( dk � p)� cos(k�=2)k̂� cos((p+ k)�=2)
i!

p̂2�

�

 
( dp+ 2k)�( dp+ 2k)�

4X
�=1

k̂2� cos
2(p�=2)

+k̂�k̂� cos((p+ k)�=2) cos((p+ k)�=2)( dk � p)2

�
4X

�=1

k̂�( dk � p)� cos(p�=2)

�
h
( dp+ 2k)�k̂� cos((p+ k)�=2) + ( dp+ 2k)� k̂� cos((p+ k)�=2)

i
�( d2p+ k)k̂

h
( dp+ 2k)�k̂� cos(k�=2) cos(p�=2)

+( dp+ 2k)� k̂� cos(k�=2) cos(p�=2) � ( dk � p)� cos(k�=2)k̂� cos((p+ k)�=2)

�( dk � p)� cos(k�=2)k̂� cos((p+ k)�=2)
i!

p̂�p̂� (3.40)

� < S(1)!(3) >
���
R̂=T̂=1

= �

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2(k̂2)2( dp+ k)2

 (h
p̂� cos(k�=2)

X
�6=�

( dp+ k)�k̂�

+p̂�k̂�( dp+ k)� cos(k�=2) cos(p�=2) + p̂2�k̂� cos(k�=2) cos((p+ k)�=2)
i

�k̂� cos((p+ k)�=2) cos(k�=2)

)
+

(
�̂$ �̂

)!
; (3.41)

still have to evaluated completely numerically. This was done using the standard
routine Vegas from the Numerical Recipes [41]. On the other hand, the integrals
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which can be done by hand give:

� < S(2)!(2) >
���
R̂=T̂=1

=
5

192
�0 �

5

36
�2

0 (3.42)

� < !(4) >
���
R̂=T̂=1

=
5

192
�0 �

1

6
�2

0 (3.43)

Using the result of a numerical integration for �0, one �nally gets the fol-
lowing results:

� < S(2)!(2) > = 0:00070077 +�0:00000005

�
1

2
� <

�
S(1)

�2
!(2) > = 0:00187522 +�0:00000145

� < S(1)!(3) > = �0:00254364 +�0:00000265

�� < !(4) > = �0:00003397 +�0:00000062 (3.44)

Add everything up:

� < S(2)!(2) > �
1

2
� <

�
S(1)

�2
!(2) > +� < S(1)!(3) > �� < !(4) >

= �0:00000162 +�0:00000478; (3.45)

hence in the range of the numerical error, (3.39) is indeed satis�ed|or, in
other words, the action sum rule respectively the identity (3.5) is valid up to
next-to-leading order (for R̂ = T̂ = 1).

3.3 Gauge invariance of the Wilson Loop

The gauge invariance of the expectation value of the Wilson loop in leading
order has already been checked in section 3.2.1. For checking this in next-to-
leading order, one makes use again of the relation (3.16) which connects the
propagator in Feynman gauge with the propagator in an arbitrary gauge by
using the insertion of the operator G.

If one applies this relation to an arbitrary graph with n gluon lines in an
arbitrary gauge �, it follows that one can write this graph as a sum of the
following contributions: the same graph with all propagators in Feynman gauge,
n graphs with n � 1 propagators in Feynman gauge and the insertion of G in
the remaining line, n(n�1)=2 graphs with n�2 propagators in Feynman gauge
and insertions of G into the two remaining lines, and so on; the last one is a
graph with insertions of G into all lines. The coeÆcients of the terms in this

sum are (�1)m
�
1� 1

�

�m
, where m is the number of insertions of G.

Here is an example to illustrate this (n = 3); as usual a gluon line without
an explicit index � represents a propagator in Feynman gauge, and a cross de-
notes the insertion of the operator G (3.15):

� �

�

= �
�
1� 1

�

�
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�
�
1� 1

�

�
�
�
1� 1

�

�

+
�
1� 1

�

�2
+
�
1� 1

�

�2

+
�
1� 1

�

�2
�
�
1� 1

�

�3

Now looking at the graphs contributing to < W > in next-to-leading order
(see �gure 3.2), ones sees that there are up to four gluon lines in them. Hence
one would expect that if one calculates < W > in an arbitrary gauge, one gets

a polynomial in
�
1� 1

�

�
of degree four. If one can show that all terms in this

polynomial with the exception of one of order zero (which is independent of �)
vanish, then the gauge invariance of the expectation value of the Wilson loop
is proven.

Terms of order three and four

The only contributions with a power of
�
1� 1

�

�
greater than two come from

the two vacuum polarization graphs (gluon tadpole and gluon loop) where G
can be inserted into external as well as into internal lines, and from the spider
graph. One can easily show that these contributions give zero. For this, use
(3.23); introducing the operator G again, that formula is equivalent to:

X
l

< AlA
A
� (x)G >conn= 0; (3.46)

This means that even if only one end of the gluon line into which G is inserted
is summed over the whole Wilson loop, while the other end is entirely arbitrary,
the contribution of the graph will vanish. Diagrammatically:
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x

= 0.

So, obviously the contributions from the vacuum polarization graphs where G
is inserted into an external line, and from the spider graph where G is inserted
into the line whose endpoints is summed over the whole loop, vanish, and only

terms up to
�
1� 1

�

�2
remain in the polynomial which results from < W >.

Terms of order one

The contributions of order
�
1� 1

�

�1
were already given in section 3.2.2 - the �

terms were just the contributions to < SW >conn which resulted from exactly
one insertion of G into a gluon line. It also has been shown in that section that
the condition that all of these terms add up to zero (3.39) is equivalent to the
validity of (3.5) in next-to-leading order. But as already stressed several times,
(3.5) is an identity, hence one can conclude that the contributions of the graphs
with exactly one G insertion indeed add up to zero.

Terms of order two

The only contributions which are left are the ones with two insertions of G.
Using (3.46), one sees that such contributions can only come from< !(3)S(1) >0,

< !(4B) >0 and < !(2)
�
S(1)

�2
>conn. Fortunately, the explicit calculation of

these three contributions is not too hard; the end result is:

< !(3)S(1) >0 = < !(2)
�
S(1)

�2
>conn= 2 < !(4B) >0

= 8

�
1�

1

�

�2

C2(G)C2(F )

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

(k̂2)2(( dp+ k)2)2

� sin2(p�R̂=2) sin
2(p� T̂ =2)

�

 
k̂�
p̂�

cos((p+ k)�=2)�
k̂�
p̂�

cos((p+ k)�=2)

!2

: (3.47)

Considering now that < W > is given by

< W >= �
1

2
g30 < !(2)

�
S(1)

�2
>conn �g

4
0 < !(4) >0 +g

4
0 < !(3)S(1) >0 + : : : ;

(3.48)

one sees that the three contributions of order
�
1� 1

�

�2
indeed add up to zero.
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Hence it has been shown that in the polynomial in
�
1� 1

�

�
of degree 4 one

gets from calculating < W > in an arbitrary gauge, only the �rst term (of order�
1� 1

�

�0
and hence independent of �) survives: The term of order 1 gives zero

because of (3.39), which is equivalent to the identity (3.5); the term of order 2
has been shown to vanish exactly above, and the terms of order 3 and 4 vanish
because of (3.46). Therefore the proof is complete: up to next-to-leading order,
the expectation value of the Wilson loop is indeed gauge invariant.

3.4 Restriction to a �xed time slice

What remains to be checked is the restriction to one �xed time slice, expressed
by the equation

lim
T̂!1

1

T̂
< S >q�q�0= lim

T̂!1
< L(t) >q�q�0 : (3.49)

Using (1.8), this is equivalent to:

lim
T̂!1

1

T̂
< SW >conn= lim

T̂!1
< LW >conn : (3.50)

Alternatively, with (3.5), it can also be written as:

lim
T̂!1

< LW >conn= g20
@

@g20
lim
T̂!1

1

T̂
< W > (3.51)

The expansion of < LW >conn is very similar to the one for < SW >conn (3.20):

< LW > � < L >< W >

= �g20 < L(0)!(2) >conn +g
4
0 < L(0)S(2)!(2) >conn

�
1

2
g40 < L(0)(S(1))2!(2) >conn +g

4
0 < L(0)S

(2)
FP!

(2) >conn

+g40 < L(0)S(2)
meas!

(2) >conn �g
4
0 < L(2)!(2) >conn

+g40 < L(1)S(1)!(2) >conn �g
4
0 < L(1)!(3) >conn

+g40 < L(0)S(1)!(3) >conn �g
4
0 < L(0)!(4) >conn +O(g

6
0) (3.52)

For the right hand side of (3.51), one can again use (3.19).

3.4.1 Leading order

On the right hand side of (3.51), in leading order the only contribution comes
from

< !(2) >0 = 2C2(F )

Z
BZ

d4p

(2�)4
sin2(p3R̂=2) sin

2(p4T̂ =2)

p̂2

�

 
1

sin2(p3=2)
+

1

sin2(p4=2)

!
: (3.53)
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For convenience, the spatial direction of the Wilson loop, previously denoted
simply by �, has been chosen to be the x3 direction here, and euclidean time,
previously denoted by �, has been identi�ed with x4.
Now the limit of large T̂ has to be considered. Obviously

lim
T̂!1

1

T̂

Z
BZ

d4p

(2�)4
sin2(p4T̂ =2)

p̂2
sin2(p3R̂=2)

sin2(p3=2)
= 0:

Only the second term can give a non-vanishing contribution; using

lim
T̂!1

1

T̂

sin2(p4T̂ =2)

sin2(p4=2)
= 2�Æ(p4)

(compare with section 2.2.1), what remains is:

lim
T̂!1

1

T̂
< !(2) >0= 2C2(F )

Z
BZ

d3p

(2�)3
sin2(p3R̂=2)

~̂p
2 (3.54)

with

~̂p
2
=

3X
j=1

p̂2j :

On the other hand, an insertion of L(0) leads to non-conservation of the fourth
component of the momentum vector:

< AA
� (p)A

B
� (q)L

(0) >conn = ÆAB
1

2

(2�)3Æ3(~p+ ~q)

p̂2q̂2

" �
Æ�� p̂

2 � p̂�p̂�
�
e�i(p+q)�=2

+
�
Æ�� q̂

2 � q̂�q̂�
�
e�i(p+q)�=2

#
: (3.55)

Making use of this, an explicit calculation yields the following result:

< L(0)!(2) >conn

= 2C2(F )

Z
BZ

d4p

(2�)4

�Z
��

dq4
2�

~̂p
2
+ 1

2

�
p̂24 + q̂24

�
p̂2
�
~̂p
2
+ q̂24

� sin2(p3R̂=2) sin(p4T̂ =2) sin(q4T̂ =2)

 
�
cos((p4 + q4)(nc;4 � t))

sin2(p3=2)
+
cos((p4 + q4)(nc;4 � t� 1=2))

sin(p4=2) sin(q4=2)

!
; (3.56)

where again nc is the center of the Wilson loop and hence

nc;4 = n0;4 +
1

2
T̂ :

In the limit of large T̂ , the �rst term vanishes due to the fast oscillations of the
two sines depending on T̂ ; the second gives only a non-vanishing contribution
for p4 = q4 = 0:

lim
T̂!1

< L(0)!(2) >conn= 2C2(F )

Z
BZ

d3p

(2�)3
sin2(p3R̂=2)

~̂p
2 ; (3.57)



48 CHAPTER 3. ACTION SUM RULE

which is identical to the result above. Hence in leading order the restriction to
the �xed time slice t indeed works:

lim
T̂!1

1

T̂
< S >q�q�0= lim

T̂!1
< L(t) >q�q�0 +O(g

4
0): (3.58)

For the special case nc;4 = t (the �xed time slice lying in the middle of the
Wilson loop), the result above simpli�es to

< L(0)!(2) >conn

= 2C2(F )

Z
BZ

d4p

(2�)4

�Z
��

dq4
2�

~̂p
2
+ 1

2

�
p̂24 + q̂24

�
p̂2
�
~̂p
2
+ q̂24

� sin2(p3R̂=2) sin(p4T̂ =2) sin(q4T̂ =2)

 
�

1

sin2(p3=2)
+

cos((p4 + q4)=2))

sin(p4=2) sin(q4=2)

!
; (3.59)

and it is obvious that the �rst term vanishes for all T̂ , because the integrand
is odd in p4 as well as in q4. For the cosine in the numerator of the second
term, use the trigonometric relation cos((p4 + q4)=2)) = cos(p4=2) cos(q4=2) �
sin(p4=2) sin(q4=2); the sines do not contribute because they would again give
a function odd in p4 as well as in q4. Hence what remains is:

< L(0)!(2) >conn (3.60)

= 2C2(F )

Z
BZ

d4p

(2�)4

�Z
��

dq4
2�

~̂p
2
+ 1

2

�
p̂24 + q̂24

�
p̂2
�
~̂p
2
+ q̂24

� sin2(p3R̂=2)
sin(p4T̂ =2)

tan(p4=2)

sin(q4T̂ =2)

tan(q4=2)
;

an expression which in the limit T̂ !1 again gives

lim
T̂!1

< L(0)!(2) >conn= 2C2(F )

Z
BZ

d3p

(2�)3
sin2(p3R̂=2)

~̂p
2 : (3.61)

3.4.2 Next-to-leading order

The graphs corresponding to the next-to-leading order contributions were mostly
given in the �gures 3.1 and 3.2 already, but now the plaquettes are not summed
over all possible positions, but only over the ones with a �xed time. Ad-
ditionally, three extra graphs have to be considered now, corresponding to
< L(2)!(2) >conn, < L(1)S(1)!(2) >conn and < L(1)!(3) >conn (see �gure 3.3).
There again the possible positions of the plaquette lie only on the �xed time
slice.

By inspecting the calculation of S(1) and S(2) in [16] and modifying it to give
explicit results for L(1) and L(2), one sees that essentially the contributions of
the three graphs above can be obtained by using the usual four-gluon vertex in
< L(2)!(2) >conn and the usual three-gluon vertex in the two other expectation
values. The only crucial di�erences are that one has to replace the usual four
momentum conservation at these vertices with conservation of only the spatial
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components of the momentum, and that some additional phase factors appear.
This will be studied in more detail below.

Now, as usual, consider the di�erent types of graphs separately. There are:

� vacuum polarization graphs

� spider graphs

� graphs with two independent gluon lines

For simplicity, the Wilson loop will now be chosen to lie symmetrically to the
�xed time slice, and only the special case t = 0 will be treated. Thus one has
n0;4 = �1

2 T̂ .

The vacuum polarization graphs

In contrast to the situation in section 3.2, there are now two additional vacuum
polarization graphs (the �rst two displayed in �gure 3.3); the other �ve are
very similar to the ones already encountered in section 3.2, but now instead of
calculating the e�ect of inserting the operator G, one has to use (3.55) in the
gluon lines.

First, look at the cases where L is inserted into an external line (represented
by the �rst, third, �fth, sixth and seventh graph in �gure 3.1). Because of the
non-conservation of the time component of the momentum, the relation (3.23)
can not be used any more; one has to calculate the contributions explicitly. The
result is:

4C2(F )
X
�;�;


Z
BZ

d4p

(2�)4

Z
BZ

d4q

(2�)4
sin2(p3R̂=2) sin(p4T̂ =2) sin(q4T̂ =2)

(p̂2)2q̂2
���(p)

1

2

" �
Æ�
 p̂

2 � p̂� p̂

�
e�i(p+q)
=2 +

�
Æ�
 q̂

2 � q̂� q̂

�
e�i(p+q)�=2

#
Æ3� � Æ4�
sin(p�=2)

Æ3
 � Æ4

sin(q
=2)

(2�)3Æ(~p+ ~q): (3.62)

In the limit T̂ ! 1, only the terms with � = 
 = 4 give a non-vanishing
contribution, and these only for p4 = q4 = 0. Hence the limit is, carrying out

Figure 3.3: Additional contributions to < LW >conn
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the integration over q1, q2 and q3 using the Delta-function:

4C2(F )
X
�;�;


Z
BZ

d3p

(2�)3
sin2(p3R̂=2)�

~̂p
2�2 �44(~p; 0): (3.63)

This is identical to

2 lim
T̂!1

1

T̂
WV P ;

where WV P can be found in section 2.2.2, and, using (3.24), therefore also
identical to

lim
T̂!1

1

T

 
� < S(0)!(2)S(2) >conn;ext + < S(0)!(2) 1

2

�
S(1)

�2
>conn;ext

� < S(0)!(2)S
(2)
FP >conn;ext � < S(0)!(2)S(2)

meas >conn;ext

!
; (3.64)

where only the insertions of S(0) into the external gluon lines are considered.
Next, look at the graphs where the sum over the plaquettes on the time slice

t = 0 is inserted into an internal line, represented by the second and fourth
graph in �gure 3.1, and at the two graphs with insertions of L(1) respectively
L(2) depicted in �gure 3.3. They give the following contribution:

2C2(F )
X
�;�

Z
BZ

d4p

(2�)4

�Z
��

dq4
2�

sin2(p3R̂=2) sin(p4T̂ =2) sin(q4T̂ =2)

p̂2
�
~̂p
2
+ q̂24

�
Æ3� � Æ4�
sin(p�=2)

Æ3� � Æ4�
sin(q�=2)

�L
��(~p; p4; q4); (3.65)

where �L represents the vacuum polarization tensor with L(0) inserted into one
of its internal lines respectively the two contributions with L(1) or L(2). In the
limit T̂ !1, this reduces to:

2C2(F )
X
�;�

Z
BZ

d3p

(2�)3
sin2(p3R̂=2)�

~̂p
2�2 �L

44(~p; 0; 0): (3.66)

Now �rst consider the contribution from the second graph in �gure 3.1,
where L(0) is inserted into the internal line of the gluon tadpole. The four-gluon
vertex appearing there is denoted by �ABCD���� (k; q; r; s). Its explicit form can be
found in [16], for example; it is not important here. Then the contribution
coming from this graph is proportional to:X

�;�

Z
BZ

d4r

(2�)4

Z
BZ

d4s

(2�)4
(2�)4Æ(p+ q + r + s)�ABCD���� (p; q; r; s)

(2�)3Æ(~r + ~s)

r̂2ŝ2

1

2

" �
Æ��r̂

2 � r̂�r̂�
�
e�i(r+s)�=2 +

�
Æ��ŝ

2 � ŝ�ŝ�
�
e�i(r+s)�=2

#
; (3.67)

where the Delta-function coming from the four-gluon vertex has been extraced
explicitly from �. Splitting this four-dimensional Delta-function up into the
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spatial and temporal components and looking now only at the relevant compo-
nent where p4 = q4 = 0, this reduces to:Z

BZ

d4r

(2�)4

Z
BZ

d4s

(2�)4
(2�)3Æ(~p+ ~q + ~r + ~s)(2�)Æ(r4 + s4)

(2�)3Æ(~r + ~s)

r̂2ŝ2X
�;�

�ABCD���� ((~p; 0); (~q; 0); r; s)

1

2

" �
Æ��r̂

2 � r̂�r̂�
�
e�i(r+s)�=2 +

�
Æ��ŝ

2 � ŝ�ŝ�
�
e�i(r+s)�=2

#
:

Carrying out the four s-integrations, using the second and third Delta-function,
yields:

X
�;�

Z
BZ

d4r

(2�)4
(2�)3(~p+ ~q)�ABCD���� ((~p; 0); (~q; 0); r;�r)

Æ�� r̂
2 � r̂�r̂�

(r̂2)2
: (3.68)

Using (3.10), one sees that this is the same result which one would have obtained
if one would have inserted S(0) into the internal line of the gluon tadpole diagram
and then looked only at the contribution for p4 = q4 = 0. Hence the result is:

lim
T̂!1

< L(0)!(2)S(2) >conn= lim
T̂!1

1

T̂
< S(0)!(2)S(2) >conn; (3.69)

if only the insertion into the internal line is considered. But looking at the
results for insertions into the external lines obtained above, one sees that this
formula is true even if all possible insertions are considered.

Exactly the same arguments can be made for the fourth graph in 3.1, where
L(0) is inserted into internal lines of the gluon loop. Here, too, one obtains

lim
T̂!1

< L(0)!(2)
�
S(1)

�2
>conn= lim

T̂!1

1

T̂
< S(0)!(2)

�
S(1)

�2
>conn; (3.70)

using the Delta-functions from the two three-gluon vertices. Using the results
obtained above for insertions into external lines, the end result is:

lim
T̂!1

 
� < L(0)!(2)S(2) >conn + < L(0)!(2) 1

2

�
S(1)

�2
>conn

� < L(0)!(2)S
(2)
FP >conn � < L(0)!(2)S(2)

meas >conn

!

= lim
T̂!1

1

T̂

 
� < S(0)!(2)S(2) >conn + < S(0)!(2) 1

2

�
S(1)

�2
>conn

� < S(0)!(2)S
(2)
FP >conn � < S(0)!(2)S(2)

meas >conn

!
; (3.71)

where now insertions into all gluon lines are allowed.

What remains are the two additional vacuum polarization graphs which were
depicted in �gure 3.3, incorporating L(1) and L(2). First look at the second of
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these graphs, which involves a gluon loop where one of the two three-gluon
vertices is replaced by L(1). As already mentioned above, the insertion of L(1)

at this place amounts to using a slightly altered version of the three-gluon vertex
�ABC��� (p; k; q). The usual form can be found again in [16], for example; it comes

from S(1). Doing the same derivation as outlined there, but for L(0) instead
for S, one gets:

�
(L);ABC
��� (p; q; k) = ig0(2�)

3Æ(~p+ ~q + ~k)fABCh
ei(p+q+k)(�̂+�̂)=2Æ�� cos(p�=2)( dq � k)�

+ei(p+q+k)(�̂+�̂)=2Æ�� cos(q�=2)( dk � p)�

+ei(p+q+k)(�̂+�̂)=2Æ�� cos(k�=2)( dp � q)�
i
: (3.72)

Using this, the graph

q; �;A k; �;D

gives a contribution proportional toZ
BZ

d4r

(2�)4

Z
BZ

d4s

(2�)4
1

r̂2ŝ2
(2�)4Æ(q � s� r)(2�)3Æ(~k + ~r + ~s)

X
�;�

�ABC��� (q;�r;�s)�
(L);DBC
��� (k; r; s); (3.73)

where the Delta-functions have been extracted from the �s and are displayed
explicitly. Doing the integrations over the three spatial components of s using
the �rst Delta-function, this gives:

Z
BZ

d4r

(2�)4

�Z
��

ds4
2�

1

r̂2
�
( d~r � ~q)2 + ŝ24

�(2�)Æ(q4 � s4 � r4)(2�)
3Æ(~k + ~q)

X
�;�

�ABC��� (q;�r; (~r;�s4))�
(L);DBC
��� (k; r; (�~r; s4)):

Now in the limit T̂ !1, again only the contribution for q4 = k4 = 0 is needed.
Then the �rst Delta-function can be used to do the s4-integration, and one gets:

X
�;�

Z
BZ

d4r

(2�)4
(2�)3Æ(~k + ~q)

r̂2
�
( d~r � ~q)2 + r̂24

��ABC��� ((~q; 0);�r; r)�
(L);DBC
��� ((~k; 0); r;�r):

Looking now at (3.72), one sees that in this special case the phase factors give
only factors of one, so that

�
(L);DBC
��� ((~k; 0); r;�r) = �DBC��� ((~k; 0); r;�r);
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and the contribution from the graph is simply

X
�;�

Z
BZ

d4r

(2�)4
(2�)3Æ(~k + ~q)

r̂2
�
( d~r � ~q)2 + r̂24

��ABC��� ((~q; 0);�r; r)�DBC��� ((~k; 0); r;�r): (3.74)

But that is identical to the contribution which the general gluon loop graph
would give if one would also consider only q4 = k4 = 0 there! Hence the �nal
result is:

lim
T̂!1

< L(1)S(1)!(2) >conn= lim
T̂!1

1

T̂
<
�
S(1)

�2
!(2) >conn : (3.75)

Exactly the same type of argumentation can be used for the �rst graph, with
the insertion of L(2), so that one gets also:

lim
T̂!1

< L(2)!(2) >conn= lim
T̂!1

1

T̂
< S(2)!(2) >conn : (3.76)

Summarizing: in the limit T̂ ! 1, all vacuum polarization graphs con-
tributing to the correlator of L(0) and W give the same contribution as the
vacuum polarization graphs contributing to the correlator of S and W , divided
by T̂ .

The spider graphs

There are two spider graphs here: the usual one with the three-gluon vertex,
where L(0) is inserted into a gluon line (the eighth in �gure 3.1), and the one
where the three-gluon vertex is replaced by L(1) (the third in �gure 3.3). For
the normal spider graph, one has:

lim
T̂!1

1

T̂
< S(1)!(3) >0= 0; (3.77)

hence in the limit of high T̂ , the contributions of these two spider graphs should
also vanish.

Unfortunately there is no such elegant argument here as in the case of the
vacuum polarization graphs; the contributions have to be calculated explicitly.
The second one is simpler tban the �rst; one gets for it:
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d
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�
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�
sin(q4T̂ =2)

sin(q4=2)

sin(k4T̂ =2)
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sin((2k + p)3R̂=2)
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�OR(k3;�p3 � k3): (3.78)

In the limit T̂ !1, terms like

sin(q4T̂ =2)

sin(q4=2)

give constant contributions, whereas sines and cosines which depend on T̂ , but
are not divided by the corresponding sines of the coordinates, give contributions
proportional to T̂�1 because of the fast oscillations of these functions. Therefore
all of the terms in the expression above go to zero in the limit:

lim
T̂!1

< !(3)L(1) >conn= 0: (3.79)

The �rst spider graph is much more complicated:

< L(0)!(3)S(1) >conn�
X


;Æ;�;'

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

�Æ�
(p; k;�p� k)

1

2

0BBBBB@

"
Æ
'

 � d
~p+ ~k

�2

+ q̂24

!
� q̂
 q̂'

#�����
~q=�~p�~k

e�i(p+k+q)
=2

p̂2k̂2
� dp+ k

�2  � d
~p+ ~k

�2

+ q̂24

!

�

�
Æ
'

� dp+ k
�2
�
� dp+ k

�



� dp+ k
�
'

�
e�i(p+k+q)'=2

p̂2k̂2
� dp+ k

�2  � d
~p+ ~k

�2

+ q̂24

!
1CCCCA

�

"
Æ3Æ � Æ4Æ
sin(pÆ=2)

sin(p3R̂=2) sin(p4T̂ =2)

�

 
2Æ3�Æ4'

sin(k3R̂=2)

sin(k3=2)

sin(q4T̂ =2)

sin(q4=2)

�
cos((p+ k)3R̂=2 + k4T̂ =2)

�i sin((p+ k)3R̂=2 + k4T̂ =2)
�

+Æ3�Æ3'
�
� i sin((q � k)4T̂ =2)

sin(k3R̂=2)

sin(k3=2)

sin((p+ k)3R̂=2)

sin((p+ k)3=2)
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+2 sin((q + k)4T̂ =2)OR(k3;�p3 � k3)
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: (3.80)

Here the explicit expression for the three-gluon vertex �Æ�
 was not inserted
and the sums were not carried out; this would only have given an even more
complicated result. This is not necessary because even here one can already see
that all of the terms which appear vanish in the limit (using the same arguments
as above). Hence the result for this spider graph is also:

lim
T̂!1

< L(0)!(3)S(1) >conn= 0: (3.81)

Thus indeed both spider graphs vanish in the limit of large T̂ .

The graphs with two independent gluon lines

As usual, !(4) is splitted up into its parts and every contribution is calculated
separately. First one obtains, again using the symmetry properties of the colour
indices:

< L(0)!(4F ) >conn= 0: (3.82)
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The contribution of !(4) which is proportional to (C2(F ))
2 only comes from

!(4A) and can also be easily calculated:

< L(0)!(4A) >conn=< !(2) >< L(0)!(2) >conn +C2(G)C2(F ) � (: : :) (3.83)

In the limit of large T̂ , < L(0)!(2) >conn gives the same contribution as <
S(0)!(2) >conn =T̂ and therefore < L(0)!(4A) >conn gives the same contribution
as < S(0)!(4A) >conn =T̂ .

The other parts are much more complicated. Because of the non-conserva-
tion of the momentum when L(0) is inserted, (3.23) no longer applies, so that
the insertion into both lines has to be considered now. This leads to a doubling
of the number of the graphs which have to be computed.

It is convenient to split the various contributions up again, classifying them
according to the number of links in spatial and temporal direction. First look
at the graphs where only spatial links appear; denote the relevant parts of !(4)

by !
(4)
RR:

< L(0)!
(4A)
RR >conn

= �2
C2(G)C2(F )

3

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2

~̂p
2
+ 1

2 p̂
2
4 +

1
2 q̂

2
4 � p̂23

p̂2
�
~̂p
2
+ q̂24

�
sin2(p3R̂=2)

sin2(p3=2)

sin2(k3R̂=2)

sin2(k3=2)
sin2(k4T̂ =2) sin(p4T̂ =2) sin(q4T̂ =2) (3.84)

< L(0)!
(4B)
RR >conn

= �
C2(G)C2(F )

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2

~̂p
2
+ 1

2 p̂
2
4 +

1
2 q̂

2
4 � p̂23

p̂2
�
~̂p
2
+ q̂24

�
�

"
sin((k � p)4T̂ =2) sin((k + q)4T̂ =2)

sin2(p3R̂=2)

sin2(p3=2)

sin2(k3R̂=2)

sin2(k3=2)

+4 sin((p+ k)4T̂ =2) sin((q � k)4T̂ =2)O
2
R(p3; k3)

#
(3.85)

< L(0)!
(4C)
RR >conn

=
C2(F )C2(G)

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2

~̂p
2
+ 1

2 p̂
2
4 +

1
2 q̂

2
4 � p̂23

p̂2
�
~̂p
2
+ q̂24

�
� sin2(k4T̂ =2)

sin(k3R̂=2)

sin(k3=2)
cos(p4T̂ =2) cos(q4T̂ =2) (3.86)

�

"
2 (�1 � �2)jp3$k3

+
sin(k3R̂=2)

sin(k3=2)
�R(p3;�p3) +

sin(p3R̂=2)

sin(p3=2)
�R(p3; k3)

#
< L(0)!

(4D)
RR >conn

=
C2(F )C2(G)

6

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2

~̂p
2
+ 1

2 p̂
2
4 +

1
2 q̂

2
4 � p̂23

p̂2
�
~̂p
2
+ q̂24

�
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� sin2(k4T̂ =2)
sin(k3R̂=2)

sin(k3=2)
cos(p4T̂ =2) cos(q4T̂ =2)

�

"
2 (�1 � �2)jp3$k3

+ 2�R(0;�k3)� 2�R(p3 � k3;�p3)

+2
sin(k3R̂=2)

sin(k3=2)

sin2(p3R̂=2)

sin2(p3=2)
�
sin(p3R̂=2)

sin(p3=2)
�R(p3; k3)

+
sin(k3R̂=2)

sin(k3=2)
�R(p3;�p3)

#
(3.87)

< L(0)!
(4E)
RR >conn

=
C2(F )C2(G)

6

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2

~̂p
2
+ 1

2 p̂
2
4 +

1
2 q̂

2
4 � p̂23

p̂2
�
~̂p
2
+ q̂24

�
� cos(p4T̂ =2) cos(q4T̂ =2) sin

2(k4T̂ =2)
sin(k3R̂=2)

sin(k3=2)

"
sin(k3R̂=2)

sin(k3=2)
R̂

+
sin(k3R̂=2)

sin(k3=2)

sin(p3R̂=2)

sin(p3=2)

sin((p+ k)3R̂=2)

sin((p+ k)3=2)

#
: (3.88)

Because of the fast oscillations of the two cosines for T̂ !1, the contributions
of these integrals vanish in the limit of large T̂ .

The next group consists of the graphs with two spatial and two temporal
links, where L(0) is inserted into the line connecting the two spatial links. The

corresponding parts of !(4) are denoted by !
(4)
RT1:

< L(0)!
(4A)
RT1 >conn

= �2
C2(G)C2(F )

3

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2

~̂p
2
+ 1

2 p̂
2
4 +

1
2 q̂

2
4 � p̂23

p̂2
�
~̂p
2
+ q̂24

�
sin2(p3R̂=2)

sin2(p3=2)

sin2(k4T̂ =2)

sin2(k4=2)
sin2(k3R̂=2) sin(p4T̂ =2) sin(q4T̂ =2) (3.89)

= 0

< L(0)!
(4B)
RT1 >conn

= �
C2(G)C2(F )

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2

~̂p
2
+ 1

2 p̂
2
4 +

1
2 q̂

2
4 � p̂23

p̂2
�
~̂p
2
+ q̂24

�
�
sin2(p3R̂=2)

sin2(p3=2)

sin2(k4T̂ =2)

sin2(k4=2)
cos(p4T̂ =2) cos(q4T̂ =2) (3.90)

< L(0)!
(4C)
RT1 >conn

=
C2(G)C2(F )

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2

~̂p
2
+ 1

2 p̂
2
4 +

1
2 q̂

2
4 � p̂23

p̂2
�
~̂p
2
+ q̂24

�
�

"
sin2(k4T̂ =2)

sin2(k4=2)
sin2(k3R̂=2) cos(p4T̂ =2) cos(q4T̂ =2)�R(p3;�p3)
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+
sin2(k4T̂ =2)

sin2(k4=2)
sin2(k3R̂=2) cos(p4T̂ =2) cos(q4T̂ =2)

sin2(p3R̂=2)

sin2(p3=2)

#
(3.91)

< L(0)!
(4D)
RT1 >conn

=
C2(G)C2(F )

6

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2

~̂p
2
+ 1

2 p̂
2
4 +

1
2 q̂

2
4 � p̂23

p̂2
�
~̂p
2
+ q̂24

�
�

"
�
sin2(k4T̂ =2)

sin2(k4=2)
sin2(k3R̂=2) cos(p4T̂ =2) cos(q4T̂ =2)�R(p3;�p3)

+2
sin2(k4T̂ =2)

sin2(k4=2)
sin2(k3R̂=2) cos(p4T̂ =2) cos(q4T̂ =2)

sin2(p3R̂=2)

sin2(p3=2)

#
(3.92)

< L(0)!
(4E)
RT1 >conn

=
C2(G)C2(F )

6

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2

~̂p
2
+ 1

2 p̂
2
4 +

1
2 q̂

2
4 � p̂23

p̂2
�
~̂p
2
+ q̂24

�
�
sin2(k4T̂ =2)

sin2(k4=2)
sin2(k3R̂=2) cos(p4T̂ =2) cos(q4T̂ =2)R̂: (3.93)

For T̂ !1, the factor sin2(k4T̂ =2)
sin2(k4=2)

gives a linear dependence on T̂ , but the two

cosines both give factors of T̂�1, so that in total all of these integrals go with
T̂�1 in the limit and hence vanish.

Then there are the graphs with two spatial and two temporal links where
L(0) is inserted into the line connecting the two temporal links. The corre-

sponding parts of !(4) are denoted by !
(4)
RT2:

< L(0)!
(4A)
RT2 >conn

= �2
C2(G)C2(F )

3

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
~̂p
2

p̂2
�
~̂p
2
+ q̂24

�
�
sin2(k3R̂=2)

sin2(k3=2)
sin2(k4T̂ =2)

sin(p4T̂ =2)

tan(p4=2)

sin(q4T̂ =2)

tan(q4=2)
sin2(p3R̂=2) (3.94)

< L(0)!
(4B)
RT2 >conn

= �
C2(G)C2(F )

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
~̂p
2

p̂2
�
~̂p
2
+ q̂24

�
�
sin2(k3R̂=2)

sin2(k3=2)

sin(p4T̂ =2)

tan(p4=2)

sin(q4T̂ =2)

tan(q4=2)
(3.95)

< L(0)!
(4C)
RT2 >conn

=
C2(G)C2(F )

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
~̂p
2

p̂2
�
~̂p
2
+ q̂24

�
�

"
3 sin2(k4T̂ =2)

sin2(k3R̂=2)

sin2(k3=2)
cos((p+ q)4=2)�T (p4; q4)
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+ cos(k4T̂ )
sin2(k3R̂=2)

sin2(k3=2)
sin2(p3R̂=2)

sin(p4T̂ =2)

tan(p4=2)

sin(k4T̂ =2)

tan(q4=2)

+ sin2(p3R̂=2)�R(k3;�k3)
sin(p4T̂ =2)

tan(p4=2)

sin(q4T̂ =2)

tan(q4=2)

#
(3.96)

< L(0)!
(4D)
RT2 >conn

=
C2(G)C2(F )

6

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
~̂p
2

p̂2
�
~̂p
2
+ q̂24

�
�

" �
3� cos(k4T̂ )

�
sin2(p3R̂=2)

sin2(k3R̂=2)

sin2(k3=2)

sin(p4T̂ =2)

tan(p4=2)

sin(q4T̂ =2)

tan(q4=2)

+
�
1 + 2 cos(p3R̂)

�
sin2(k4T̂ =2)

sin2(k3R̂=2)

sin2(k3=2)

sin(p4T̂ =2)

tan(p4=2)

sin(q4T̂ =2)

tan(q4=2)

�3 sin2(k4T̂ =2)
sin2(k3R̂=2)

sin2(k3=2)
cos((p+ q)4=2)�T (p4; q4)

� sin2(p3R̂=2)�R(k3;�k3)
sin(p4T̂ =2)

tan(p4=2)

sin(q4T̂ =2)

tan(q4=2)

#
(3.97)

< L(0)!
(4E)
RT2 >conn

=
C2(G)C2(F )

6

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
~̂p
2

p̂2
�
~̂p
2
+ q̂24

�
�

"
3 sin2(k4T̂ =2)

sin2(k3R̂=2)

sin2(k3=2)

sin((p+ q)4T̂ =2)

tan((p+ q)4=2)

+R̂ sin2(p3R̂)
sin(p4T̂ =2)

tan(p4=2)

sin(q4T̂ =2)

tan(q4=2)

#
: (3.98)

Not all of these terms vanish seperately, but their sum gives:

< L(0)!
(4)
RT2 >conn =

C2(G)C2(F )

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
~̂p
2

p̂2
�
~̂p
2
+ q̂24

�
�
sin2(k3R̂=2)

sin2(k3=2)

sin(p4T̂ =2)

tan(p4=2)

sin(q4T̂ =2)

tan(q4=2)
cos(k4T̂ ) cos(p3R̂):

(3.99)

This expression vanishes in the limit of large T̂ , again because of the fast oscil-
lations of the cosine.

The next large group consists of the graphs with three spatial links and one

temporal link. Denoting the corresponding part with !
(4)
RRRT , they give:

< L(0)!
(4A)
RRRT >conn

= �
C2(G)C2(F )

3

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
p̂24 + q̂24

p̂2
�
~̂p
2
+ q̂24

�
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�
sin2(k3R̂=2)

sin2(k3=2)
sin2(k4T̂ =2)

sin(p4T̂ =2)

tan(p4=2)

sin(q4T̂ =2)

tan(q4=2)
sin2(p3R̂=2) (3.100)

< L(0)!
(4B)
RRRT >conn

= �
C2(G)C2(F )

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
p̂3p̂4

p̂2
�
~̂p
2
+ q̂24

� sin(q4T̂ =2)
tan(q4=2)

�
sin(k3R̂=2)

sin(k3=2)

"
sin2(p3R̂=2)

sin(p3=2)

sin(k3R̂=2)

sin(k3=2)
� 2 cos(p3R̂=2)OR(p3; q3)

#
�
�
cos2(k4T̂ =2) sin(p4T̂ =2) cos(p4=2)� sin2(k4T̂ =2) cos(p4T̂ =2) sin(p4=2)

�
(3.101)

< L(0)!
(4C)
RRRT >conn

=
C2(G)C2(F )

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
p̂4

p̂2
�
~̂p
2
+ q̂24

� sin(q4T̂ =2)
tan(q4=2)

�

" �
sin(p4(T̂ + 1)=2) + sin(p4(T̂ � 1)=2)

�
sin(p3=2) sin(p3R̂=2) (�1R � �2R)

+ sin2(p3R̂=2) sin(p4(T̂ + 1)=2)�R(k3;�k3)

+
sin(k3R̂=2)

sin(k3=2)
sin(p3R̂=2) sin(p3=2) sin(p4(T̂ � 1)=2) cos(k4T̂ )�R(p3; k3)

+ sin(p4T̂ =2) sin
2(p3R̂=2) cos(p4=2)�R(k3;�k3)

� sin(p4(T̂ � 1)=2)
sin(k3R̂=2)

sin(k3=2)
sin(p3=2) sin(p3R̂=2)�R(k3; p3)

� sin(p4(T̂ � 1)=2)
sin(k3R̂=2)

sin(k3=2)
sin(p3=2) cos(p3R̂=2)OR(k3; p3)

+ sin2(p3R̂=2)
�
sin2(k4T̂ =2) sin(p4(T̂ � 1)=2) + sin(p4T̂ =2) cos(k4T̂ )

�
+2 sin(p4(T̂ � 1)=2) sin2(k4T̂ =2)

sin(k3R̂=2)

sin(k3=2)
cos(p3R̂=2) sin(p3=2)OR(k3; p3)

�2 cos(p4T̂ =2) sin(p4=2) sin
2(k4T̂ =2)

sin2(k3R̂=2)

sin2(k3=2)
sin2(p3R̂=2)

#
(3.102)

< L(0)!
(4D)
RRRT >conn

=
C2(G)C2(F )

12

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
p̂4

p̂2
�
~̂p
2
+ q̂24

� sin(q4T̂ =2)
tan(q4=2)

�

" �
sin(p4(T̂ + 1)=2) + sin(p4(T̂ � 1)=2)

�
sin(p3=2) sin(p3R̂=2)

� (�1R � �2R +�R(0; k3)� �R(p3 + k3;�p3))

+
sin2(k3R̂=2)

sin2(k3=2)
sin2(p3R̂=2)

�
sin(p4(T̂ � 1)=2) + sin(p4(T̂ + 1)=2) cos(k4T̂ )

�
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� sin(p3=2) sin(p3R̂=2) sin(p4(T̂ � 1)=2) cos(k4T̂ )
sin(k3R̂=2)

sin(k3=2)
�R(k3; p3)

� sin2(p3R̂=2) sin(p4(T̂ + 1)=2)�R(k3;�k3)

+2 sin2(p3R̂=2)
sin2(k3R̂=2)

sin2(k3=2)

�
sin(p4T̂ =2) cos(p4=2)

� sin2(k4T̂ =2) sin(p4(T̂ + 1)=2)
�

+sin2(p3R̂=2)
sin2(k3R̂=2)

sin2(k3=2)

�
sin(p4T̂ =2) cos(p4=2)

� sin2(k4T̂ =2) sin(p4(T̂ � 1)=2)
�

+sin2(k4T̂ =2)
sin(k3R̂=2)

sin(k3=2)
sin(p4(T̂ � 1)=2) sin(p3=2)

�
�
sin(p3R̂=2)�R(p3; k3) + cos(p3R̂=2)OR(p3; k3)

�
� sin2(p3R̂=2) sin(p4T̂ =2) cos(p4=2)�R(k3;�k3)

+
sin2(k3R̂=2)

sin2(k3=2)
sin2(p3R̂=2)

�
�
sin2(k4T̂ =2) sin(p4(T̂ � 1)=2) + cos(k4T̂ ) sin(p4T̂ =2) cos(p4=2)

� #
(3.103)

< L(0)!
(4E)
RRRT >conn

=
C2(G)C2(F )

12

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
p̂4

p̂2
�
~̂p
2
+ q̂24

� sin(q4T̂ =2)
tan(q4=2)

�

"
sin2(k3R̂=2) sin(p4T̂ =2) cos(p4=2)R̂

+
sin(k3R̂=2)

sin(k3=2)

sin((p+ k)3R̂=2)

sin((p+ k)3=2)
sin(p3R̂=2) sin(p3=2)

�
�
sin2(k4T̂ =2) + cos(k4T̂ )

�
sin(p4(T̂ � 1)=2)

+
�
sin(p4(T̂ + 1)=2) + sin(p4(T̂ + 1)=2)

�
sin(p3R̂=2) sin(p3=2)

� (�R(p3; 0) � �R(k3; p3 � k3))

+ sin(p4(T̂ + 1)=2) sin2(p3R̂=2)R̂

#
: (3.104)

All of these contributions go to zero in the limit of large T̂ .

What remains are the graphs with four temporal links and the graphs with
three temporal and one spatial link. Only these can give non-vanishing contri-

butions in the limit of large T̂ ; the �rst ones will be denoted by !
(4)
TT and the

others with !
(4)
RTTT . The explicit results are:

< L(0)!
(4A)
TT >conn



62 CHAPTER 3. ACTION SUM RULE

= �2
C2(G)C2(F )

3

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4

�Z
��

dq4
2�

1

k̂2
~̂p
2

p̂2
�
~̂p
2
+ q̂24

�
�
sin2(k4T̂ =2)

sin2(k4=2)
sin2(k3R̂=2)

sin(p4T̂ =2)

tan(p4=2)

sin(q4T̂ =2)

tan(q4=2)
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The functions �1T and �2T are obtained from �1 and �2 by replacing R̂
with T̂ , p� with p4 and k� by k4 (see section 2.2.2). The new functions �3T

and �4T are the even parts of the following sums:
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These results with L(0) above have to be compared to the expressions one gets
by inserting S(0) into the graphs with !(4) in the limit of large T̂ . The graphs
contributing to < S(0)!(4) >0 can be split in the same way as outlined above,
and with similar arguments as before, it can be shown that the contributions
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RRRT vanish in the limit of large T̂ . Hence only
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the sections 2.2.2 and 3.2.2, are given here:
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sin(p4T=2)

sin(p4=2)
(�1T � �2T )

� (2� cos(k3R))
sin(p�T=2)

sin(p�=2)

sin(k�T=2)

sin(k�=2)

sin((p� + k�)T=2)

sin((p� + k�)=2)

�
� sin2(p3R̂=2)

(3.120)

< S(0)!
(4E)
TT >conn

=
C2(G)C2(F )

3

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2
k̂2 + ~̂k

2

�
k̂2
�2

"
sin2(p4T=2)

sin2(p4=2)
T sin2(p3R̂=2)

� sin2(p3R̂=2) sin
2(k3R̂=2)

sin(p4T=2)

sin(p4=2)

sin(k4T=2)

sin(k4=2)

sin((p+ k)4T=2)

sin((p+ k)4=2)

�
:

(3.121)

and

< S(0)!
(4A)
RTTT >conn

= 0 (3.122)

< S(0)!
(4B)
RTTT >conn

= �C2(G)C2(F )

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2
k̂3k̂4�
k̂2
�2 sin2(k3R̂=2)sin(k3=2)

sin(p4T̂ =2)

sin(p4=2)

� cos2(p3R̂=2)

"
sin2(k4T̂ =2)

sin(k4=2)

sin(p4T̂ =2)

sin(p4=2)
+ 2 cos(k4T̂ =2)OT (k4; p4)

#
(3.123)

< S(0)!
(4C)
RTTT >conn

= �
C2(G)C2(F )

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2
k̂3k̂4�
k̂2
�2

�

"
2 sin2(p3R̂)

sin(p4T̂ =2)

sin(p4=2)

sin2(k3R̂=2)

sin(k3=2)
sin(k4R̂=2)�T (k4; p4)
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+2 sin2(p3R̂=2)
sin(p4T̂ =2)

sin(p4=2)

sin2(k3R̂=2)

sin(k3=2)
cos(k4T̂ =2)OT (p4; k4)

+ sin2(p3R̂=2)
sin(p4T̂ =2)

sin(p4=2)

sin2(k3R̂=2)

sin(k3=2)

�
�
sin(k4T̂ =2)�T (p4; k4) + cos(k4T̂ =2)OT (p4; k4)

� #
(3.124)

< S(0)!
(4D)
RTTT >conn

=
C2(G)C2(F )

12

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2
k̂3k̂4�
k̂2
�2

�

"
sin2(p4T̂ =2)

sin(p3R̂=2)

sin2(p3=2)

sin2(k3R̂=2)

sin(k3=2)
sin(k4T̂ =2)�T (p4; k4)

+2 sin2(p3R̂=2)
sin2(p4T̂ =2)

sin2(p4=2)

sin2(k3R̂=2)

sin(k3=2)

sin2(k4T̂ =2)

sin(k4=2)

�4 sin2(p3R̂=2)
sin2(p4T̂ =2)

sin2(p4=2)

sin2(k3R̂=2)

sin(k3=2)
cos(k4T̂ =2)OT (p4; k4)

+2 sin2(p3R̂=2)
sin2(p4T̂ =2)

sin2(p4=2)

sin2(k3R̂=2)

sin(k3=2)

�
�
sin(k4T̂ =2)�T (p4; k4)� cos(k4T̂ =2)OT (p4; k4)

� #
(3.125)

< S(0)!
(4E)
RTTT >conn

= �
C2(G)C2(F )

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
1

p̂2
k̂3k̂4�
k̂2
�2 sin(p4T̂ =2)sin(p4=2)

sin2(p3R̂=2)

�
sin2(k3R̂=2)

sin(k3=2)
sin(k4T̂ =2)

sin((p+ k)4T̂ =2)

sin((p+ k)4=2)
: (3.126)

Now using the expressions (3.105) to (3.126), it has to be shown that

lim
T̂!1

< L(0)!(4) >conn= lim
T̂!1

1

T̂
< S(0)!(4) >conn : (3.127)

For the parts with !(4A), this is easy to show; using

lim
T̂!1

< L(0)!(2) >conn= lim
T̂!1

1

T̂
< S(0)!(2) >conn :

one indeed gets:

lim
T̂!1

< L(0)!
(4A)
TT >conn= lim

T̂!1

1

T̂
< S(0)!

(4A)
TT >conn (3.128)

and

lim
T̂!1

< L(0)!
(4A)
RTTT >conn= lim

T̂!1

1

T̂
< S(0)!

(4A)
RTTT >conn= 0: (3.129)
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All the other contributions have to be checked explicitly by evaluating the eight-
respectively nine-dimensional integrals using a numerical integration routine
like Vegas [41]. This work, which requires lots of computer time, is still in
progress.



Chapter 4

Energy Sum Rule

In deriving the energy sum rule in the form

V̂ (R̂; �̂) = lim
T̂!1

"
�� < �P 0t + P

0
s >q�q�0 +

1

4

X
~x

< T��(~x; t) >q�q�0

#
; (4.1)

essentially three steps were necessary:

1. Taking the derivative (1.19) of the potential, calculated on an anisotropic
lattice, with respect to the anisotropy parameter �, and then returning to
the isotropic lattice � = 1; this led to (1.20).

2. Introducing the abbreviations �� and using the formula derived in [42]
for �+; the result was (1.23).

3. Taking the limit of large T̂ and thereby restricting the sum over all pla-
quettes to one �xed time slice.

There is no problem with the second step; the formula for �+ used there
was proven in [42] analytically, as well as checked numerically. But the �rst and
third step are questionable; its not entirely clear if in the continuum limit, the
potential really becomes completely independent of � (hence it is not clear if
the derivative (1.19) really is zero), and the behaviour for large T̂ is not clear,
too.

In the �rst section of this chapter, some basic calculations will be done,
and the energy sum rule will be cast into an equivalent form which is easier
to check. The second section deals then with the explicit perturbative check.
This will lead to a better understanding of the various terms which contribute
to the potential energy (the energy in the electric and in the magnetic �elds
and the trace anomaly). The various contributions will be classi�ed and their
magnitudes will be compared in the third section. Finally, the limit of large T̂
will be examined.

71
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4.1 Preliminaries

It will turn out that it will be helpful to write the di�erence between the spatial
and temporal plaquettes in the �rst term of (1.23) in the following way:

�Pt + Ps = �Pt �Ps + 2Ps: (4.2)

Then the potential is given by:

V̂ = lim
T̂!1

1

T̂

�
�� < �Pt �Ps + 2Ps >q�q�0 +

�L(g0)

2g0
< S >q�q�0

�
= lim

T̂!1

1

T̂

"
��

�̂
< �S + 2Ss >q�q�0 +

�L(g0)

2g0
< S >q�q�0

#

= lim
T̂!1

1

T̂

"
�

g20
2d(F )

�� < S >q�q�0 +
g20
d(F )

�� < Ss >q�q�0 +
�L(g0)

2g0
< S >q�q�0

#
;

(4.3)

where Ss denotes the part of the action which comes from summing only over
the spatial plaquettes.

Because the expectation value of the action appears in two places in the
formula above, the identity (3.5)

lim
T!1

1

T
< S >q�q�0;subtr= �g20

@

@g20
V̂ (4.4)

becomes very useful now. When using it, one has to pay attention that the
self-energy contributions have to be subtracted. Inserting this identity above,
one gets:

V̂ =
g40

2d(F )
��

@

@g20
V̂ �

�L(g0)

2
g0

@

@g20
V̂ + lim

T̂!1

1

T̂

g20
d(F )

�� < Ss >q�q�0 (4.5)

Until this point, everything had been exact. Now the following expansions will
be used, where the explicit expressions for �̂t and �̂t were taken from [42]:

�� =
1

2

 
@�̂t
@�

�
@�̂s
@�

!
�=1

=
1

2

�
@

@�

�
��̂ + 2d(F )�ct(�)�

1

�
�̂ �

2d(F )

�
cs(�)

��
�=1

+O(g20)

=
1

2

�
�̂ + 2d(F )ct(�) + 2d(F )�

@ct
@�

�
1

�2
�̂ �

2d(F )

�2
cs(�)�

2d(F )

�

@cs
@�

�
�=1

+O(g20)

=
1

2

�
�̂ + 2d(F )

@ct
@�

� �̂ � 2d(F )
@cs
@�

�
�=1

+O(g20)

=

8><>:
d(F )

�
@ct
@� + @cs

@�

�
�=1

�̂ + d(F )
�
@ct
@� �

@cs
@�

�
�=1

9>=>;+O(g20) =

(
�0d(F )

2d(F )
g20

+ cd(F )

)
+O(g20) (4.6)
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Additionally one needs the leading order of the expansion of the lattice beta
function:

�L(g0) � �a
@g0
@a

= ��0g
3
0 +O(g50) (4.7)

with

�0 =
11C2(G)

48�2
:

Then one arrives at:

V̂ = g20
@

@g20
V̂ +

1

2
cg40

@

@g20
V̂ +

1

2
�0g

4
0

@

@g20
V̂

+ lim
T̂!1

1

T̂

h
2 < Ss >q�q�0 +g

2
0c < Ss >q�q�0

i
+O(g60)

= g20
@

@g20
V̂ +

@ct
@�

����
�=1

g40
@

@g20
V̂

+ lim
T̂!1

1

T̂

h
2 < Ss >q�q�0 +g

2
0c < Ss >q�q�0

i
+O(g60); (4.8)

where

c+ �0 = 2
@ct
@�

����
�=1

has been used. The formula (4.8) is equivalent to the energy sum rule up to
next-to-leading order; it will be checked now in the following section.

All that is needed in order to do this are the expansions of the potential and
of < Ss >q�q�0. The explicit form of the potential up to next-to-leading order
can be taken from chapter 2; for the other term, one gets the following expansion
up to next-to-leading order, which is similar to the ones for < SW >conn (3.20)
and < LW >conn (3.52):

< Ss >q�q�0 = �g20 < S(0)
s !(2) >conn +g

4
0 < S(0)

s S(2)!(2) >conn

�g40 < S(0)
s

1

2
(S(1))2!(2) >conn +g

4
0 < S(0)

s S
(2)
FP!

(2) >conn

+g40 < S(0)
s S(2)

meas!
(2) >conn +g

4
0 < S(1)

s S(1)!(2) >conn

�g40 < S(2)
s !(2) >conn +g

4
0 < S(0)

s S(1)!(3) >conn

�g40 < S(0)
s !(4) >conn �g

4
0 < S(1)

s !(3) >conn

�g40 < S(0)
s !(2) >conn< !(2) >0 +O(g

6
0): (4.9)

In contrast to (3.20) and (3.52), here a disconnected term (the last one) appears,
because of the de�nition (1.8) of < O >q�q�0.

For simplicity, but without loss of generality (because of the symmetry of the
lattice), in the following the Wilson loop will be chosen to lie in the 3-4-plane.

4.2 Perturbative check

4.2.1 Leading order

In leading order, (4.8) reduces to the following simple formula:

V̂ = g20
@

@g20
V̂ � 2g20 lim

T̂!1

1

T̂
< S(0)

s !(2) >conn (4.10)
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where use has been made of the fact that both the expansion for < Ss >q�q�0

and the expansion for the potential start with g20 . But the latter one leads also
to the following identity:

V̂ = g20
@

@g20
V̂ +O(g40); (4.11)

hence in leading order, the energy sum rule is equivalent to the requirement

lim
T̂!1

1

T̂
< S(0)

s !(2) >conn= 0; (4.12)

i. e., in leading order, the expectation value of the spatial plaquettes has to
vanish in the limit of large temporal extent of the Wilson loop.

An explicit calculation for this correlator can be done by �rst looking at the

insertion of S
(0)
s into an arbitrary gluon line:

< AA
� (p)A

B
� (q)S

(0)
s >conn= ÆAB(2�)4Æ(p+ q)Æs�

Æ�� ~̂p
2
� p̂�p̂�

(p̂2)
Æs� (4.13)

with

Æs� := 1� Æ�4 =

(
1 � < 4
0 � = 4

(4.14)

Then the result for the correlator with the Wilson loop is:

< S(0)
s !(2) >conn;subtr= �C2(F )

Z
BZ

d4p

(2�)4
cos(p4T̂ )

(p̂2)2
sin2(p3R̂=2)

sin2(p3=2)

�
~̂p
2
� p̂23

�
(4.15)

Taking the limit, one obviously obtains:

lim
T̂!1

1

T̂
< S(0)

s !(2) >conn;subtr= 0; (4.16)

the expectation value of the spatial plaquettes (the energy in the magnetic
�elds) does indeed vanish in leading order, and therefore the energy sum rule
is true in leading order.

Looking at the relevant Feynman diagrams makes this a bit clearer. On the
one hand, there are the possibilities where both gluon lines end on spatial lines
of the Wilson loop:

Here a sum over all spatial plaquettes is to be understood (which is denoted by
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the perspective view of the plaquette), and, as usual, the end points of the gluon
lines can be attached to all four links of the plaquette. Obviously, such diagrams
can give no contribution proportional to T̂ ; therefore their contributions to

< S
(0)
s !(2) >conn;subtr vanish when dividing by T̂ and then taking the limit. On

the other hand, the sum over all of the diagrams of the following form:

would give a contribution proportional to T̂ . But such diagrams can not appear,
because the propagator in Feynman gauge connects only links which are parallel
to each other. Only spatial plaquettes appear here, hence no gluon line can
connect the plaquettes to temporal line of the Wilson loop.

4.2.2 Next-to-leading order

Using the result derived above

lim
T̂!1

1

T̂
< S(0)

s !(2) >conn;subtr= 0; (4.17)

one sees that only the higher terms in the expansion of < Ss >q�q�0 can give non-
vanishing contributions in the limit of large T̂ . Hence the term g20 < Ss >q�q�0

in (4:8) is of order g60 and does not contribute in next-to-leading order:

V̂ = g20
@

@g20
V̂ +

@ct
@�

����
�=1

g40
@

@g20
V̂ + 2 lim

T̂!1

1

T̂
< Ss >q�q�0 +O(g

6
0): (4.18)

The remaining graphs which contribute to < Ss >q�q�0 can, as usual, be
divided into the three groups

� vacuum polarization graphs

� spider graphs

� graphs with two independent gluon lines

And again as usual, these three types of graphs will be examined separately.

The vacuum polarization graphs

The relevant graphs are shown in �gure 4.1. Using the same argument as for the
one diagram in leading order, one sees easily that most graphs do not contribute
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Figure 4.1: Vacuum polarization graphs contributing to the expectation value
of the spatial plaquettes

for T̂ !1; only the second and the fourth graph survive:

lim
T̂!1

< S
(0)
s S(2)!(2) >conn;ext

T̂
= lim

T̂!1

< S
(0)
s

1
2(S

(1))2!(2) >conn;ext

T̂

= lim
T̂!1

< S
(2)
s !(2) >conn

T̂
= lim

T̂!1

< S
(0)
s S

(2)
FP!

(2) >conn

T̂

= lim
T̂!1

< S
(0)
s S

(2)
meas!(2) >conn

T̂
= lim

T̂!1

< S
(1)
s S(1)!(2) >conn

T̂
= 0 (4.19)

(because of the insertion of S
(0)
s , respectively S

(2)
s , only graphs can contribute in

which at least one of the external gluon lines ends on a spatial line of the Wilson
loop|but the sum over such graphs does not give a contribution proportional
to T̂ and hence vanishes in the limit). The subscript "ext" in the �rst two terms

means that there, only the insertions of S
(0)
s into external lines are considered.
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The remaining graphs (number two and four) will be studied later in more
detail.

The spider graphs

As in section 3.4.2, there are two spider graphs which have to be taken into
account here:

The �rst graph behaves for T̂ ! 1 like < S(1)!(3) >conn, the ordinary spider
graph without plaquette insertions:

lim
T̂!1

1

T̂
< S(0)

s S(1)!(3) >conn= lim
T̂!1

1

T̂
< S(1)!(3) >conn= 0 (4.20)

Treating the second graph is even more simple; it does not contribute at all,
even for �nite T̂ :

< S(1)
s !(3) >conn= 0: (4.21)

The reason for this is that S
(1)
s contains a three-gluon vertex. Because this

vertex only incorporates spatial plaquettes and the gluon lines are in Feynman
gauge, all three gluon lines can only be connected to the spatial lines in the
Wilson loop. But then the polarizations of all three gluons which meet at the
vertex are identical|and for this con�guration, the vertex vanishes.

Therefore both spider graphs give no contributions. The only graphs which
are left now, beside the two vacuum polarization graphs mentioned above, are

The graphs with two independent gluon lines

Here one has to consider two types of contributions. First, as usual, there are the
contributions coming from !(4), but, as already mentioned, here additionally a
disconnected contribution appears. This is depicted in the following two graphs:

�
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The �rst graph gives contributions proportional to (C2(F ))
2 and to C2(F ) �

C2(G); the product of the two loops in the second graph gives a color factor
(C2(F ))

2. An explicit calculation yields:

< S(0)
s !(4A) >conn

= 2 (C2(F ))
2
Z
BZ

d4p

(2�)4
sin2(p3R̂=2) sin

2(p4T̂ =2)

p̂2

 
1

sin2(p3=2)
+

1

sin2(p4=2)

!

�

Z
BZ

d4p

(2�)4
cos(p4T̂ =2)

(p̂2)2
sin2(p3R̂=2)

sin2(p3=2)

�
~̂p
2
� p̂23

�
+C2(F )C2(G) � (: : :) (4.22)

and

< !(2) >0< S(0)
s !(2) >conn

= �2 (C2(F ))
2
Z
BZ

d4p

(2�)4
sin2(p3R̂=2) sin

2(p4T̂ =2)

p̂2

 
1

sin2(p3=2)
+

1

sin2(p4=2)

!

�

Z
BZ

d4p

(2�)4
cos(p4T̂ =2)

(p̂2)2
sin2(p3R̂=2)

sin2(p3=2)

�
~̂p
2
� p̂23

�
; (4.23)

hence the contributions proportional to (C2(F ))
2 cancel exactly, and the dis-

connected part vanishes.
But there are still contributions left from !(4) which are proportional to

C2(F ) � C2(G). These graphs can be classi�ed into three categories:

1. Graphs in which only temporal links of the Wilson loop appear; these
links can not be connected with the spatial plaquettes using the gluon
propagators in Feynman gauge, and therefore their contributions vanish.

2. Graphs in which only spatial links of the Wilson loop appear; these do
not give contributions proportional to T̂ and therefore in the limit of large
T̂ , they vanish.

3. Graphs in which temporal as well as spatial links appear - these have to
be treated explicitly.

In order to examine the contributions of the graphs of the third category,
split !(4) again into the parts A to F and then look only at the graphs with

spatial as well as temporal links; write for these !
(4A)
RT to !

(4F )
RT . The results for

the various contributions are:

< S(0)
s !

(4A)
RT >conn

= �
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sin2(p3=2)

sin2(k4T=2)

sin2(k4=2)

[1� cos(k3R)� cos(p4T ) + cos(p4T ) cos(k3R)]

+ (C2(F ))
2 � (: : :) (4.24)
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< S(0)
s !

(4B)
RT >conn
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(4.26)
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C2(F )C2(G)

24

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
~̂p
2
� p̂23

(p̂2)2
1

k̂2"
sin2(p3R=2)

sin2(p3=2)

sin2(k4T=2)

sin2(k4=2)
(8� 2 cos(p4T ) cos(k3R))

�3
sin2(p3R=2)

sin2(p3=2)

 
sin2(k4T=2)

sin2(k4=2)
� T

!

�
sin2(k4T=2)

sin2(k4=2)

 
sin2(p3R=2)

sin2(p3=2)
�R

!

�
sin2(p3R=2)

sin2(p3=2)
cos(p4T )

 
sin2(k4T=2)

sin2(k4=2)
+ 3T

!

�
sin2(k4T=2)

sin2(k4=2)
cos(k3R)

 
sin2(p3R=2)

sin2(p3=2)
+R

!
(4.27)

< S(0)
s !

(4E)
RT >conn

=
C2(F )C2(G)

12

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
~̂p
2
� p̂23

(p̂2)2
1

k̂2"
3
sin2(p3R=2)

sin2(p3=2)
T (1� cos(p4T )) +

sin2(k4T=2)

sin2(k4=2)
R (1� cos(k3R))

#
:(4.28)

And �nally, because of the symmetry properties in the colour indices one gets
as usual:

< S(0)
s !

(4F )
RT >conn= 0: (4.29)
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Adding everything, the result is:

< S(0)
s !

(4)
RT >conn;C2(F )C2(G) =

C2(F )C2(G)

2

Z
BZ

d4p

(2�)4

Z
BZ

d4k

(2�)4
~̂p
2
� p̂23

(p̂2)2
1

k̂2

sin2(p3R=2)

sin2(p3=2)
cos(p4T )

sin2(k4T=2)

sin2(k4=2)
cos(k3R)

(4.30)

Divide by T̂ and take the limit:

lim
T̂!1

< S
(0)
s !(4) >conn;C2(F )C2(G)

T̂
= lim

T̂!1

< S
(0)
s !

(4)
RT >conn;C2(F )C2(G)

T̂
= 0:

(4.31)
Hence nearly all contributions vanish, and only the vacuum polarization graphs
contribute to < Ss >q�q�0 in next-to-leading order!

Check in next-to-leading order

Making use of the fact that only the vacuum polarization graphs contribute to
the expectation value of the spatial plaquettes, the result is now simply:

< Ss >q�q�0 = g40 lim
T̂!1

1

T̂

�
< S(0)

s S(2)!(2) >conn � < S(0)
s

1

2
(S(1))2!(2) >conn

�
= C2(F )g

4
0

Z
BZ

d3p

(2�)3
cos(p3R̂)�

~̂p
2�2 �

(s)
44 (~p; 0): (4.32)

As usual, the self energy contributions have been subtracted here. The vac-
uum polarization tensor �s

�� (with the insertion of the sum over the spatial
plaquettes) is given by the sum of the following two contributions (given for an
arbitrary dimension d; see appendix C):

�Loop;s
��

= C2(G)

Z
BZ

ddk

(2�)d

d�1X
i;j=1

~̂k
2

Æij � k̂ik̂j�
k̂2
�2

( dp+ k)2"
Æij( dp+ 2k)�( dp+ 2k)� cos(pi=2) cos(pj=2)

+Æ��( d2p+ k)i( d2p+ k)j cos(k�=2) cos(k�=2)

+Æ�iÆ�j( dp� k)2 cos((p+ k)i=2) cos((p+ k)j=2)

+

(
Æ�i

 
( d2p+ k)j( d2p+ k)� cos(ki=2) cos(pi=2)

+( dp� k)j( dp+ 2k)� cos((p+ k)i=2) cos(pj=2)
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+( dp� k)�( d2p+ k)j cos((p+ k)i=2) cos(k�=2)

!)
+

(
(�; i)$ (�; j)

)#
(4.33)

�Tadpole;s
��

= �
1

2
C2(G)

(
Æ��

�
2(d� 2)

d
�0 �

(d+ 1)(d� 2)

3d(d� 1)
�0~̂p

2
�

+Æs��

"
(2d� 5)(d � 2)

d� 1
�0 �

7

6d
+

�
(2d� 1)(d � 2)

4d(d� 1)
�0 �

1

4d

�
p̂2�

+

�
�
(5d� 2)(d � 2)

6d(d � 1)
�0 +

1

d

�
~̂p
2
�

d� 2

6d(d � 1)
�0p̂

2

#

+
d� 2

6(d� 1)
�0p̂�p̂�

�
Æs� + Æs�

�
+
(4d � 1)(d � 2)

12d(d � 1)
�0p̂�p̂�Æ

s
�Æ

s
�

)

+

�
C2(F )�

1

6
C2(G)

�(
Æ��

(d� 2)2

d(d � 1)
�0~̂p

2

+Æs��

"�
4� 2d

d
�0 +

1

d

�
~̂p
2
+

(d� 2)2

d(d� 1)
�0p̂

2

#

�
(d� 2)2

d(d� 1)
�0p̂�p̂�

�
Æs� + Æs�

�
�

�
4� 2d

d
�0 +

1

d

�
p̂�p̂�Æ

s
�Æ

s
�

)
(4.34)

with
Æs�� :=

X
�;�

Æs�Æ��Æ
s
� (4.35)

and the usual abbreviation

�0 �

Z
BZ

ddk

(2�)d
1

k̂2

(see appendix C).
As already explained above, vacuum polarization graphs in which the sum

over the spatial plaquettes is inserted into an external line can not contribute;
therefore the ghost graphs and the graph with the insertion of the integration
measure do not appear here, because they do not have internal gluon lines.

Only the � = � = d = 4 components contribute in the limit of large T̂ , and
from these, only the part with p4 = 0. Then the formulas above reduce to:

�Tadpole;s
44 (~p; 0) = C2(G)�0

�
1

12
~̂p
2
�
1

2

�
+ C2(F )

1

3
�0~̂p

2
(4.36)

�Loop;s
44 (~p; 0) = C2(G)

Z
BZ

d4k

(2�)4
1�

k̂2
��

(
d
~p+ ~k)2 + k̂24

�
"
(c2k)24~̂k2 �3� 1

4
~̂p
2
�
+ ~̂k

2 �
1�

1

4
k̂24

�� d
2~p+ ~k

�2

�(c2k)24
 
~̂k
2

�
1

4

X
i

k̂2i p̂
2
i

!
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�

�
1�

1

4
k̂24

� X
i

� d2p+ k
�
i
k̂i

!2
35 : (4.37)

There is a source for a potential infrared divergence in the p-integral in (4.32);
one has to check that the vacuum polarization tensor goes to zero for p ! 0.
Inserting p = 0 above, the results are:

�Tadpole;s
44 (0) = �

1

2
C2(G)�0 = ��Loop;s

44 (0)

and therefore

�
(s)
44 (0) = �Tadpole;s

44 (0) + �Loop;s
44 (0) = 0: (4.38)

Hence there is no infrared divergence, and the integral can be done without
problems.

Inserting the formula (4.32) for the expectation value of the spatial plaque-
ttes, (4.18) becomes:

V̂ = g20
@

@g20
V̂ +

@ct
@�

����
�=1

g40
@

@g20
V̂ +2C2(F )g

4
0

Z
BZ

d3p

(2�)3
cos(p3R̂)�

~̂p
2�2 �

(s)
44 (~p; 0) (4.39)

Then the expansion for the potential

V̂ = g20V
(2) + g40V

(4) +O(g60) (4.40)

yields

V (4) = 2V (4) +
@ct
@�

����
�=1

V (2) + 2C2(F )

Z
BZ

d3p

(2�)3
cos(p3R̂)�

~̂p
2�2 �

(s)
44 (~p; 0): (4.41)

The explicit expression for the potential can be taken from chapter 2. Addi-
tionally, use

@ct
@�

����
�=1

= �
1

4
C2(F ) � 0:586844 + 4C2(G) � 0:005306; (4.42)

derived in [42], to obtain �nally the following expression, which is equivalent to
the energy sum rule in next-to-leading order:Z

BZ

d3p

(2�)3
cos(p3R̂)�

~̂p
2�2 �

(s)
44 (~p; 0)

=
C2(G)

4�R̂

�
0:023220 ln R̂+ 0:057400

�
+
C2(F )

4�R̂
0:051644: (4.43)

Now it is convenient to split up �Tadpole into two parts, corresponding to
the group theoretical factors:

�Tadpole = C2(G)�
Tadpole;1 + C2(F )�

Tadpole;2; (4.44)
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Figure 4.2: Comparison of the calculated values to the �tted curve; see text

then (4.43) splits also into two parts:

(I)

Z
BZ

d3p

(2�)3
cos(p3R̂)�

~̂p
2�2 �Tadpole;s;2

44 (~p; 0) =
1

4�R̂
0:051644 (4.45)

(II)

Z
BZ

d3p

(2�)3
cos(p3R̂)�

~̂p
2�2 �

�Tadpole;s;1
44 (~p; 0) + �Loop;s;1

44 (~p; 0)
�

=
1

4�R̂

�
0:023220 ln R̂+ 0:057400

�
(4.46)

In the �rst part (4.45), insert the explicit expression �Tadpole;2
44 (~p; 0) =

1
3�0 ~̂p

2
; the remaining integral gives in the continuum limit (see section 2.2.1):

Z
BZ

d3p

(2�)3
cos(p3R̂)

~̂p
2 =

1

4�R̂
: (4.47)

Hence the �rst part of (4.43) requires simply the following formula to hold:

1

3
�0 = 0:051644: (4.48)

Inserting for �0 the numerically calculated value (see appendix C), one sees
that this formula is indeed satis�ed|to very good accuracy!

The second part (4.46) is a little bit more complicated. The integral on
the left hand side can be only evaluated numerically; this has been done for
R̂ between 1 and 10 using again the routine Vegas from [41]. The resulting
numbers can be compared to the function on the right hand side.

A �t of the calculated values to a function of the form

1

4�R̂

�
a ln R̂+ b

�
;

using Mathematica, gives:

a = 0:02268 � 0:00078; b = 0:05792 � 0:00132 (4.49)
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If the energy sum rule is valid, the results should be a = 0:2322 and b = 0:05740.
The numbers from the �t agree very well with this in the range of their numerical
errors. Hence the second part of (4.43) is also valid.

For illustrative purposes, �gure 4.2 gives a plot of the calculated values (left
hand side of (4.46)), as well as of the curve on which they should lie if the
energy sum rule is valid (right hand side of (4.46)). The very good agreement
between the points and the curve is obvious.

Summarizing: Both parts, (4.45) and (4.46), of the formula (4.43), which
is equivalent to the energy sum rule in next-to-leading order, are satis�ed with
good numerical accuracy, or in other words:

The energy sum rule is valid up to next-to-leading order with good numerical
accuracy.

4.3 Contributions to the potential

Using the validity of the energy sum rule and the results obtained for the spatial
plaquettes, one can now analyze the various contributions to the potential:

V̂ = electric �eld energy +magnetic �eld energy

+trace anomaly

= ��� lim
T̂!1

1

T̂
< Pt >q�q�0;subtr +�� lim

T̂!1

1

T̂
< Ps >q�q�0;subtr

+
1

4
lim
T̂!1

1

T̂
<
X
x;�

T��(x) >q�q�0;subtr (4.50)

First, look at the contribution of the magnetic �eld energy.

�� < Ps >q�q�0;subtr =
��
�

< Ss >q�q�0;subtr

= < Ss >q�q�0;subtr +
1

2
cg20 < Ss >q�q�0;subtr;

where the constant c is again given by

c =

�
@ct
@�

�
@cs
@�

�
�=1

;

the functions ct and cs can be found in [42].

As already pointed out in the last section, in the limit of large T̂ , the leading
order of < Ss >q�q�0;subtr vanishes, and the lowest non-vanishing contribution
is of order g40 ; hence up to next-to-leading order, the second term does not
contribute here. The �rst term is given by the two vacuum polarization graphs
where the sum over the spatial plaquettes has been inserted into an internal
line. According to the results obtained in the last section, one gets then for the
contribution of the magnetic �eld energy:

magnetic �eld energy
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= �� lim
T̂!1

1

T̂
< Ps >q�q�0;subtr

=
C2(F )

4�R̂

 
11C2(G)

48�2
g40 ln

�
7:501R̂

�
+
1

2

@ct
@�

����
�=1

g40 +
1

8
C2(F )g

4
0

!

�
C2(F )

4�R̂
g40

�
C2(G)

�
0:023 ln R̂+ 0:058

�
+ 0:052C2(F )

�
: (4.51)

For the electric �eld energy, use

< Pt >q�q�0;subtr =
1

�̂
(< S >q�q�0;subtr � < Ss >q�q�0;subtr)

and

lim
T̂!1

1

T̂
< S >q�q�0;subtr= �̂

@V̂

@�̂
:

Inserting the explicit form of the potential and of < Ss >q�q�0;subtr, one then
obtains for the contribution of the electric �eld energy:

electric �eld energy

= ��� lim
T̂!1

1

T̂
< Pt >q�q�0;subtr

= �
C2(F )

4�R̂

 
g20 +

11C2(G)

16�2
g40 ln

�
7:501R̂

�
�
1

2

@cs
@�

����
�=1

g40 +
3

8
C2(F )g

4
0

!

� �
C2(F )

4�R̂

�
g20 + g40C2(G)

�
0:070 ln R̂+ 0:141

�
+ 0:302 g40 C2(F )

�
: (4.52)

Finally, for the trace anomaly one can use

X
x;�

T��(x) =
2�L
g0

S

and again

lim
T̂!1

1

T̂
< S >q�q�0;subtr= �̂

@V̂

@�̂
:

Then one sees that the contribution of the trace anomaly to the potential is
given by:

trace anomaly

=
1

4
lim
T̂!1

1

T̂
<
X
x;�

T��(x) >q�q�0;subtr

= �
11C2(F )C2(G)

96�2
g40

4�R̂

� �0:011C2(F )C2(G)
g40
4�R̂

: (4.53)

Looking at the three contributions (4.52), (4.51) and (4.53), one notices
several things:
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Figure 4.3: Contributions to the potential in NLO, proportional to (C2(F ))
2,

divided by g40 : electric �eld energy (dashed), magnetic �eld energy (dot-dashed),
potential(solid)
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Figure 4.4: Contributions to the potential in NLO, proportional to C2(F )C2(G),
divided by g40 : electric �eld energy (dashed), magnetic �eld energy (dot-dashed),
trace anomaly (dotted), potential (solid)

� The contribution from the electric �eld energy is negative and appears
already in leading order. Both group theoretical factors contribute in
next-to-leading order.

� The contribution from the magnetic �eld energy is positive and appears
�rst in next-to-leading order; but even there, only the vacuum polarization
graphs give a non-vanishing contribution. Again, both group theoretical
factors contribute.

� The contribution from the trace anomaly is negative and appears �rst in
next-to-leading order; it is proportional to C2(F ) � C2(G).

Comparing the explicit numerical factors which appear in the three con-
tributions, or even better, looking at the plots where the magnitudes of these
terms are displayed (�gures 4.3 and 4.4; for the special case of SU(3), see �gure
4.5), one additionally sees that the energy in the magnetic �elds is smaller than
the one in the electric �elds, so that only a part of the electric �eld energy is
cancelled and the overall contribution of the energy in the �elds is negative.
The trace anomaly gives an additional negative contribution, which for large R̂
is small compared to the energy in the �elds. This is in strong contrast with the
situation for a con�ning potential, discussed in section 1.3.3, where the trace
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anomaly and the energy in the �elds both gave exactly equal contributions to
the potential.

4.4 Restriction to a �xed time slice

What remains to be shown is that one can restrict the sum over the plaquettes
to a �xed time slice:

lim
T̂!1

1

T̂
< Pt >q�q�0 = lim

T̂!1
< P 0t(t) >q�q�0 (4.54)

lim
T̂!1

1

T̂
< Ps >q�q�0 = lim

T̂!1
< P 0s(t) >q�q�0; (4.55)

where P 0t(t) respectively P
0
s(t) denotes the sum over all plaquettes on the time

slice t. Using

Ps + Pt =
1

�̂
S (4.56)

and assuming that

lim
T̂!1

1

T̂
< S >q�q�0= lim

T̂!1
< L(t) >q�q�0 (4.57)

(see section 4.4), it suÆces to show that the restriction to a �xed time slice
works for the spatial plaquettes; this is equivalent to showing that

lim
T̂!1

1

T̂
< Ss >q�q�0= lim

T̂!1
< Ls(t) >q�q�0 : (4.58)

The left hand side of this equation has already been discussed in section 4.2;
for the right hand side, one gets an analogous expansion:

< Ls >q�q�0 = �g20 < L(0)
s !(2) >conn +g

4
0 < L(0)

s S(2)!(2) >conn

�g40 < L(0)
s

1

2
(S(1))2!(2) >conn +g

4
0 < L(0)

s S
(2)
FP!

(2) >conn

+g40 < L(0)
s S(2)

meas!
(2) >conn +g

4
0 < L(1)

s S(1)!(2) >conn
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Figure 4.5: All contributions to the potential in NLO for SU(3), divided by
g40 : electric �eld energy (dashed), magnetic �eld energy (dot-dashed), trace
anomaly (dotted), potential (solid)
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�g40 < L(2)
s !(2) >conn +g

4
0 < L(0)

s S(1)!(3) >conn

�g40 < L(0)
s !(4) >conn �g

4
0 < L(1)

s !(3) >conn

�g40 < L(0)
s !(2) >conn< !(2) >0 +O(g

6
0): (4.59)

4.4.1 Leading order

For calculating the correlator < L
(0)
s !(2) >conn, it is convenient, as usual, �rst

to look at the insertion of L
(0)
s into an arbitrary line. The result is very similar

to the one obtained when inserting S
(0)
s (4.13); the only di�erence is that the

fourth component of the momentum is not conserved:

< AA
� (p)A

B
� (q)L

(0)
s >conn= ÆAB(2�)3Æ(~p+ ~q)

X
�;�

Æs�
Æ�� ~̂p

2
� p̂�p̂�

p̂2
�
~̂p
2
+ q̂24

� Æs� : (4.60)

With this, one gets the following simple result for the correlator with the Wilson
loop in leading order:

< L(0)
s (t)!(2) >conn

= �2C2(F )C2(G)

Z
BZ

d4p

(2�)4

�Z
��

dq4
2�

~̂p
2
� p̂23

p̂2
�
~̂p
2
+ q̂24

� sin2(p3R̂=2)
sin2(p3=2)

� sin(p4T̂ =2) sin(q4T̂ =2) cos((p+ q)4(nc;4 � t)); (4.61)

where again a Wilson loop lying in the 3-4-plane has been used and nc;4 is
the fourth coordinate of the center of the loop. For T̂ ! 1, this correlator
vanishes; for the special choice nc;4 = t the correlator vanishes even for every
�nite T̂ , because then the function under the integral is odd.

Thus one sees that in leading order, the restriction to one time slice indeed
works:

lim
T̂!1

1

T̂
< Ss >q�q�0= lim

T̂!1
< Ls(t) >q�q�0 +O(g

4
0): (4.62)

4.4.2 Next-to-leading order

The relevant graphs for the next order can be found essentially already in
section 4.2.2: the only crucial di�erence is that in that section, the plaquettes
were summed over all space-time, whereas here they are summed only over
the �xed time slice t. Now, as usual, it is convenient to look at the three
di�erent types of graphs seperately. For simplicity, again only the special case
nc;4 = t = 0 will be treated.

The vacuum polarization graphs

Here one can use arguments very similar to the ones in the sections 4.2.2 and

3.4.2. First look again at the graphs where L
(0)
s is inserted into an external line.
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They give a contribution proportional toZ
BZ

d4p

(2�)4

�Z
��

dq4
2�

sin2(p3R̂=2)

sin(p3=2)
sin(p4T̂ =2) sin(q4T̂ =2)

3X
j=1

�
�3j(p)

sin(p3)
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�4j(p)

sin(p4)

�
Æj3~̂p

2
� p̂j p̂3

p̂2
�
~̂p
2
+ q̂24

� : (4.63)

Obviously the function under the integral is odd in q4 and therefore the integral
vanishes even for every �nite T̂ . This is in accordance with the results of section
4.2.2, where it was shown that in the limit of large T̂ , the vacuum polarisation

graphs with an insertion of S
(0)
s into an external line do not contribute.

Next consider an insertion of L
(0)
s into an internal line and the two graphs

coming from the vertex insertions L
(1)
s and L

(2)
s (corresponding to the �rst two

graphs in �gure 3.3, but here only with spatial plaquettes). These give the
following contribution:

2C2(F )
X
�;�

Z
BZ

d4p

(2�)4

�Z
��

dq4
2�

sin2(p3R̂=2) sin(p4T̂ =2) sin(q4T̂ =2)

p̂2
�
~̂p
2
+ q̂24

�
Æ3� � Æ4�
sin(p�=2)

Æ3� � Æ4�
sin(q�=2)

�Ls
��(~p; p4; q4); (4.64)

where �Ls represents the vacuum polarization tensor with L
(0)
s inserted into one

of its internal lines respectively the two contributions with the vertex insertions

L
(1)
s or L

(2)
s . In the limit T̂ !1, this reduces to:

2C2(F )
X
�;�

Z
BZ

d3p

(2�)3
sin2(p3R̂=2)�

~̂p
2�2 �Ls

44 (~p; 0; 0): (4.65)

Now �rst look at the gluon tadpole graph. The contribution coming from
this graph is proportional to:X

�;�

Z
BZ

d4r

(2�)4

Z
BZ

d4s

(2�)4
(2�)4(p+ q + r + s)�ABCD���� (p; q; r; s)

(2�)3Æ(~r + ~s)

r̂2
�
~̂r
2
+ ŝ24

�
Æs�

�
Æ��r̂

2 � r̂�r̂�
�
Æs�; (4.66)

where again the Delta-function coming from the four-gluon vertex has been
extraced explicitly from �. Now split this four-dimensional Delta-function up
into a three-dimensional spatial Delta-function and another for the temporal
components. Additionally, as explained above, it suÆces to look at the special
case p4 = q4 = 0:Z

BZ

d4r

(2�)4

Z
BZ

d4s

(2�)4
(2�)3(~p+ ~q + ~r + ~s)(2�)Æ(r4 + s4)

(2�)3Æ(~r + ~s)

r̂2
�
~̂r
2
+ ŝ24

�
X
�;�

�ABCD���� ((~p; 0); (~q; 0); r; s)Æs�

�
Æ��r̂

2 � r̂�r̂�
�
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Carrying out the four s-integrations, using the second and third Delta-function,
gives:

X
�;�

Z
BZ

d4r

(2�)4
(2�)3(~p+ ~q)�ABCD���� ((~p; 0); (~q; 0); r;�r)Æs�

Æ��r̂
2 � r̂�r̂�

(r̂2)2
Æs�: (4.67)

If one compares this with the result one would have obtained if one would have

inserted the sum over all spatial plaquettes S
(0)
s , using (4.13), and then looking

again only at p4 = q4 = 0 (the only important part for T̂ !1), one sees that
one gets exactly the same result, and therefore:

lim
T̂!1

< L(0)
s !(2)S(2) >conn= lim

T̂!1

1

T̂
< S(0)

s !(2)S(2) >conn (4.68)

holds, if only the insertion into the internal line is considered. But above it

already had been shown that an insertion of L
(0
s into an external line gives for

T̂ ! 1 the same result as an insertion of S
(0)
s |therefore the result is �nally

that an insertion of L
(0
s into any line of the gluon tadpole graph is equivalent

to an insertion of S
(0)
s in the limit of large T̂ .

Exactly the same arguments can be made for the graph where L
(0)
s is inserted

into any line of the gluon loop graph. There one obtains:

lim
T̂!1

< L(0)!(2)
�
S(1)

�2
>conn= lim

T̂!1

1

T̂
< S(0)!(2)

�
S(1)

�2
>conn : (4.69)

So, summarizing, for the vacuum polarization graphs with an insertion, the
result is:

lim
T̂!1

 
� < L(0)

s !(2)S(2) >conn + < L(0)
s !(2) 1

2

�
S(1)

�2
>conn

� < L(0)
s !(2)S

(2)
FP >conn � < L(0)

s !(2)S(2)
meas >conn

!

= lim
T̂!1

1

T̂

 
� < S(0)

s !(2)S(2) >conn + < S(0)
s !(2) 1

2

�
S(1)

�2
>conn

� < S(0)
s !(2)S

(2)
FP >conn � < S(0)

s !(2)S(2)
meas >conn

!
; (4.70)

where now insertions into all gluon lines are allowed.

What remains are the two additional vacuum polarization graphs, incorpo-

rating L
(1)
s and L

(2)
s , analogous to the �rst two graphs in �gure 3.3, but with

the sum over the plaquettes restricted to a �xed time slice. The operators L
(1)
s

and L
(2)
s both only contain spatial links, but in the limit of large T̂ , only the

4� 4�component of the vacuum polarization tensor � contributes - hence the
contributions of these graphs vanish in the limit:

lim
T̂!1

< L(1)
s S(1)!(2) >conn= lim

T̂!1
< L(2)

s !(2) >conn= 0: (4.71)
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Again that is identical to the results one obtains if one had inserted Ss instead
of Ls, divided by T̂ and taken the limit:

lim
T̂!1

< S
(1)
s S(1)!(2) >conn

T̂
= lim

T̂!1

< S
(2)
s !(2) >conn

T̂
= 0: (4.72)

Therefore one sees that for all vacuum polarization graphs, in the limit of
large T̂ , the contributions coming from an insertion of Ss (and dividing by T̂ )
are exactly the same as the contributions coming from an insertion of Ls, so
for these graphs, the restriction to one �xed time slice works.

The spider graphs

In section 4.2.2, it was seen that the two spider graphs do not contribute in the
limit of large T̂ . Therefore if one calculates them with Ls instead of Ss, their
contributions should also go to zero.

For the �rst spider graph, corresponding to < L
(1)
s !(3) >conn, one can use

the same argument as in section 4.2.2: L
(1)
s contains a (slightly modi�ed) three-

gluon vertex, which connects only gluons with a spatial polarization with each
other, and does not conserve the fourth component of the momentum. Using
Feynman gauge, the polarizations of the gluons at the vertex are the same as
the one on the Wilson loop; and because there is only one spatial direction
available on the Wilson loop, all three gluons meeting at the vertex have the
same polarization. But for three gluons with the same polarization, the three-
gluon vertex vanishes - hence the result is simply:

< L(1)
s !(3) >conn= 0 (4.73)

- and that is equal to the result for < S
(1)
s !(3) >conn. Thus obviously one has

lim
T̂!1

1

T̂
< S(1)

s !(3) >conn= lim
T̂!1

< L(1)
s !(3) >conn : (4.74)

The treatment of the second spider graph is more complicated; it has to be
calculated explicitly. Fortunately one can use the results of section 3.4.2 for
this; using that here only spatial plaquettes are inserted, the formula obtained
there simpli�es considerably, so that in the end one gets:
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A careful analysis of the individual terms reveals that for large T̂ , all of them
go to zero, so that one indeed gets:

lim
T̂!1

1

T̂
< S(0)

s S(1)!(3) >conn= lim
T̂!1

< L(0)
s S(1)!(3) >conn= 0: (4.76)

The graphs with two independent gluon lines

There are again two graphs to consider here: �rst, the disconnected one, cor-

responding to < L
(0)
s !(2) >conn< !(2) >0, and second the one containing

!(4). But using the results obtained in leading order, where it was shown

that < L
(0)
s !(2) >conn= 0, the disconnected contribution vanishes. In the same

way, one can show that

< L(0)
s !(4A) >conn= 0:

For the remaining graphs, it is convenient to distinguish between the following
three classes again, as already in section 4.2.2. The argumentation is also very
similar:
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1. Graphs in which only temporal links of the Wilson loop appear; these
links can not be connected with the spatial plaquettes using the gluon
propagators in Feynman gauge, and therefore their contributions vanish.

2. Graphs in which only spatial links of the Wilson loop appear; these will

be discussed below. The relevant parts of !(4) will be denoted by !
(4)
RR.

3. Graphs in which temporal as well as spatial links appear - these are the
most complicated ones and will be also discussed below. The relevant

parts of !(4) will be denoted by !
(4)
RT .

As usual, !(4) is split into the parts B to F (part A has already been treated
above), and as usual, !(4F ) gives no contribution at all.

Here again the results from section 3.4.2 can be used, but because only
spatial plaquettes are inserted, the formulas simplify considerably. The graphs
of the second category give the following result:
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Because of the fast oscillations of the two cosines for T̂ !1, the contributions
of these integrals vanish in the limit of large T̂ . On the other hand, the graphs
of the third category give:
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�
sin2(k4T̂ =2)

sin2(k4=2)
sin2(k3R̂=2) cos(p4T̂ =2) cos(q4T̂ =2)R̂: (4.84)

As already pointed out in section 3.4.2, for T̂ !1, the factor sin2(k4T̂ =2)
sin2(k4=2)

gives

a linear dependence on T̂ , but the two cosines both give factors of T̂�1, so that
in total all of these integrals go with T̂�1 in the limit and hence vanish. Thus
one gets:

lim
T̂!1

< L(0)
s !(4) >= lim

T̂!1

< S
(0)
s !(4) >

T̂
= 0: (4.85)

Taking together all of the results obtained in the last subsections, one sees
that indeed

lim
T̂!1

< Ls >q�q�0= lim
T̂!1

< Ss >q�q�0

T̂
(4.86)

is satis�ed up to next-to-leading order|up to that order, the restriction to one
�xed time slice works for the spatial plaquettes. Thus the check of the energy
sum rule is now completed.





Chapter 5

Summary

In this work, it was shown that in lattice perturbation theory, both sum rules,
(1.12) and (1.23), hold up to next-to-leading order in the coupling constant.
Additionally, the possibility to restrict the expectation value of the action and
the expectation value of the magnetic �eld energy to the sum of the plaquettes
on a �xed time slice has been investigated. Two spin-o�s of the check were
a proof of the transversality of the gluonic vacuum polarization on the lattice
in leading order and a proof of the gauge invariance of the expectation value
of the Wilson loop up to next-to-leading order. This is not completely obvi-
ous, since gauge transformations on the lattice are implemented via unitary
transformations of the link variables.

The scaling behaviour of the potential which is used in the derivation of the
action sum rule was checked explicitly by using known results for the potential
[30, 39, 34]. The crucial part of this sum rule is the identity (1.7) respectively
(3.5). The perturbative examination of this identity yielded methods and valu-
able results which could be used in the examination of the energy sum rule.

Additionally, it opened up a way to proof the gauge invariance of the ex-
pectation value of the Wilson loop perturbatively up to next-to-leading order.
By expressing this expectation value as a polynomial with respect to the gauge
parameter, it was possible to show that its dependance on the gauge parameter
vanishes in all orders of the gauge parameter and up to next-to-leading order of
the coupling constant. For eliminating the dependance on the gauge parameter
in �rst order, the action sum rule could be used.

The examination of the restriction of the expectation value of the action
to one �xed time slice (the possibility to replace this expectation value by T̂
times the expectation value of the Lagrangian, the sum of all plaquettes on a
�xed time slice) turned out to be much more diÆcult. It was �rst shown that
this is possible in leading order. For the graphs in next-to-leading order, this
was accomplished for the vacuum polarization graphs, the spider graphs and
some of the graphs with two independent gluon lines; work on the rest is still
in progress. The eight- and nine-dimensional integrals have to be evaluated
numerically, and that requires lots of computer time.

On the other hand, all parts of the energy sum rule were shown to be true up
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to next-to-leading order: �rst it was checked without the restriction to a �xed
time slice. It was shown that both the expectation value of the magnetic �eld
energy and the contribution from the trace anomaly vanish in leading order, so
that the only contribution to the potential in that order stems from the energy
in the electric �elds.

In next-to-leading order it turned out that the expectation value of the
(euclidean) energy in the magnetic �elds receives its only contributions from
the graphs in which the sum over the spatial plaquettes is inserted into internal
lines of the gluonic vacuum polarization. By computing the contributions of
these graphs numerically and examining the two parts of the potential with
di�erent group theoretical factors separately, the validity of the energy sum
rule was con�rmed with good numerical accuracy.

For the expectation value of the magnetic energy it was possible to show
that it can be restricted to one �xed time slice. The leading order was again
relatively easy and could be demonstrated and explained explicitly. In the next-
to-leading order, similar arguments as before concerning the expectation value
of the action could be used to take care of the vacuum polarization graphs. The
contributions from the spider graphs and from the graphs with two independent
gluon lines were calculated explicitly and shown to vanish, as expected.

Now the questions which were posed in the introduction can be addressed
using the results obtained in the checks. Unfortunately the conclusions which
were obtained here are not very helpful because they apply only if the coupling
constant is small enough to allow perturbation theory to give sensible results.
In contrast, in real physical systems like mesons, the coupling constant is large
and perturbation theory breaks down. But the proven validity of the sum
rules in the small coupling regime suggests that they are true also in the non-
perturbative region, hence it it still possible to draw some sensible conclusions
from the results.

The �rst interesting point to notice is that there are cancellations between
the expectation values of the energy in the electric and in the magnetic �elds:
the (euclidean) electric �eld energy is always negative, the magnetic �eld energy
is positive. This is true for both contributions (with di�erent group theoretical
factors) to the potential. But here the magnitude of the magnetic �eld energy
is much smaller than the magnitude of the electric �eld energy, in contrast to
Monte Carlo simulations in the non-perturbative regime where they both have
comparable sizes. Hence the problem of large cancellations between these two
contributions which appears in these simulations does not appear in the weak
coupling limit.

Another result is that the trace anomaly contributes only a very small part
to the potential for large quark-antiquark separations; this is in strong contrast
to the case of a con�ning potential, where it contributes exactly one half of the
potential energy!

To close, I will give an outlook to the open problems, possible extensions and
future projects. Now that the sum rules have been checked perturbatively in
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the regime of a small coupling constant, one should use Monte Carlo simulations
in order to perform a check in the physical regime of large coupling constant.
There the same questions will be interesting as investigated here: the problem
of cancellations between the contributions from the magnetic and electric �eld
energies and the contribution of the trace anomaly, which is expected to have the
same magnitude as the energy in the �elds in the con�ning region. Additionally,
a look at the sum rule for the glueball mass would be interesting.

Another promising approach is using a nonperturbative model like the sto-
chastic vacuum model of Dosch and Sominov [43]. A recent calculation of the
quark-antiquark potential in this model and subsequent comparison with the
predictions of the lattice sum rules gave good consistency [44].

On the other hand, one could use the sum rules to check the consistency of
the results obtained in Monte Carlo simulations. One �rst step in this direction
was done already in [29], where a (corrected) version of Michael's action sum
rule was used.

A possible extension is the incorporation of dynamical fermions into the
sum rules, so that one could study the e�ects of string breaking more closely.
Alternatively the sum rules could be investigated for �nite temperature, which
should shed some light on the phase transition to the quark-gluon plasma.

Hence there is much potential for future work on the lattice sum rules, and
lots of additional interesting results can be expected.





Appendix A

General SU(N) formulas

A.1 Basics

The Lie group G = SU(N) has N2 � 1 generators. In the fundamental repre-
sentation of the group SU(N), these generators, denoted by TA, are given by
hermitian, traceless, complex N � N matrices. They obey the following basic
commutation and anticommutation relations:

[TA; TB ] = i
X
C

fABCT
C (A.1)

fTA; TBg =
1

d(F )
ÆABidd(R) +

X
C

dABCT
C ; (A.2)

where d(F ) = N is the dimension of the fundamental representation F and
idd(F ) denotes the d(F )-dimensional identity matrix. The real numbers fABC
are called structure constants.

In the adjoint representation, the generators are denoted by tA and are given
by complex (N2 � 1)� (N2 � 1) matrices, whose elements are:�

tA
�
BC

= �ifABC : (A.3)

A.2 Traces

For the generators TA in any representation R, one always has:

Tr(TATB) = T (R)ÆAB (A.4)

with a constant T (R) depending on the representation. For the fundamental
representation, T (R) is simply 1

2 ; for the adjoint representation, it is N . Using
this and the commutators and anticommutators given above, one gets:

Tr(TATB) =
1

2
ÆAB (A.5)

Tr(TATBTC) =
1

4
(dABC + ifABC) (A.6)

Tr(TATBTCTD) =
1

4d(F )
ÆABÆCD �

1

8

X
E

(fABEfCDE � dABEdCDE)
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+
i

8

X
E

(fABEdCDE + dABEfCDE) (A.7)

Tr(tAtB) = NÆAB : (A.8)

A.3 Sums

For any representation R, the quadratic Casimir operator C2(R) is de�ned byX
A

TATA =: C2(R)idd(R): (A.9)

In the special case of the fundamental representation F , one gets

C2(F ) =
N2 � 1

2N
; (A.10)

and for the adjoint representation G:

C2(G) = N: (A.11)

Additionally, the following relation holds for every representation R:

T (R) =
C2(R)d(R)

d(G)
; (A.12)

where d(G) is the dimension of the adjoint representation, which is equal to the
order of the group, i. e. the number of its generators. Hence for SU(N), the
formula gives:

T (R) =
C2(R)d(R)

N2 � 1
: (A.13)

This agrees with the results for T (R) given above for the fundamental as well
as the adjoint representation.

Using the formulas given above and the symmetry respectively anti-sym-
metry of the structure constants and the dABC , the following sums can be
evaluated:X

A

dAAB = 0 (A.14)X
D;E

fADEfCDE = C2(G)ÆAC = NÆAC (A.15)

X
D;E

dADEfCDE = 0 (A.16)

X
D;E

dADEdCDE =

�
4C2(F )�

2

d(F )
� C2(G)

�
ÆAC =

N2 � 4

N
ÆAC (A.17)

X
A;B;C

fABCfABC = C2(G)d(G) = N(N2 � 1) (A.18)

X
A;B;C

dABCfABC = 0 (A.19)

X
A;B;C

dABCdABC = d(G)

�
4C2(F )�

2

d()
� C2(G)

�
=

(N2 � 1)(N2 � 4)

N
:

(A.20)



Appendix B

Sums along the Wilson Loop

Some sums along the Wilson loop appear so often that it is convenient to
summarize them here.

B.1 Unrestricted sums

The easiest sum is the one which contains only one vector potential:X
l

Al

=
R̂�1X
l=0

A�(n0 + l�̂) +
T̂�1X
l=0

A�(n0 + R̂�̂+ l�̂)�
R̂�1X
l=0

A�(n0 + R̂�̂+ T̂ �̂ � l�̂)

�
T̂�1X
l=0

A�(n0 + T̂ �̂ � l�̂) (B.1)

Insert the Fourier representation for A:

A�(x) =

Z
BZ

d4p

(2�)4
A�(p)e

ipx+ip�=2 : (B.2)

This yields:X
l

Al

=
X
�

Z
BZ

d4p

(2�)4
A�(p)e

ipn0

0@Æ�� R̂�1X
l=0

eip�l+ip�=2 + Æ��

T̂�1X
l=0

eip�R̂+ip� l+ip�=2

�Æ��

R̂�1X
l=0

eip�R̂+ip� T̂�ip�l�ip�=2 � Æ��

T̂�1X
l=0

eip� T̂�ip� l�ip�=2

1A
=

X
�

Z
BZ

d4p

(2�)4
A�(p)e

ipn0

 
Æ��

eip�R̂ � 1

2i sin(p�=2)
+ Æ��

eip� T̂ � 1

2i sin(p�=2)
eip�R̂

�Æ��
e�ip�R̂ � 1

�2i sin(p�=2)
eip�R̂+ip� T̂ � Æ��

e�ip� T̂ � 1

�2i sin(p�=2)
eip� T̂

!
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=
X
�

Z
BZ

d4p

(2�)4
A�(p)e

ip(n0+�̂R̂=2+�̂T̂ =2)

"
Æ��

sin(p�R̂=2)

sin(p�=2)

�
e�ip� T̂ =2 � eip� T̂ =2

�

�Æ��
sin(p� T̂ =2)

sin(p�=2)

�
e�ip�R̂=2 � eip�R̂=2

�#

= �2i
X
�

Z
BZ

d4p

(2�)4
sin(p�R̂=2) sin(p� T̂ =2)e

ip(n0+�̂R̂=2+�̂T̂ =2)A�(p)(Æ�� � Æ��)

sin(p�=2)

(B.3)

Using this, one immediately gets:X
l

< AA
l A

B
� (x) >0 (B.4)

= �2i

Z
BZ

d4p

(2�)4
sin(p�R̂=2) sin(p� T̂ =2)

~p2
eip(n0+�̂R̂=2+�̂T̂ =2�x)

Æ�� � Æ��
sin(p�=2)X

l1;l2

< AA
l1A

B
l2 >0 (B.5)

= +4ÆAB
Z
BZ

d4p

(2�)4
sin2(p�R̂=2) sin

2(p� T̂ =2)

~p2

 
1

sin2(p�=2)
+

1

sin2(p�=2)

!

The last sum is the main ingredient of < !(2) >0 and is also crucial for calcu-
lating the vacuum polarization graphs.

B.2 Restricted sums

The following sum appears in !(3) as well as several times in !(4) and thus is
needed often:

X
l1<l2

[Al1 ; Al2 ] =

Z
BZ

d4q

(2�)4

Z
BZ

d4k

(2�)4
[A�(q); A
(k)] e

i(q+k)(n0+�̂R̂=2+�̂T̂ =2)

�

"(
� 2Æ��Æ
� sin((k + q)� T̂ =2)OT (k�; q�)

+iÆ��Æ
�
sin(k�R̂=2) sin(q�R̂=2)

sin(k�=2) sin(q�=2)
sin((k � q)� T̂ =2)

+Æ��Æ
�
sin(k� T̂ =2) sin(q�R̂=2)

sin(k�=2) sin(q�=2)

�
�
cos(q� T̂ =2� k�R̂=2) + i sin(q� T̂ =2 + k�R̂=2)

�)

�

(
�$ �; R̂$ T̂

)#
(B.6)



Appendix C

Some common integrals

In several calculations, integrals of the formZ
BZ

d4p

(2�)4
p̂�p̂� : : :

(p̂2)n
(C.1)

appear. All of them can be evaluated exactly, leaving only one constant which
has to be determined numerically up to n = 2, and an additional constant for
n = 3. For convenience, all results here will be given for arbitrary dimension
d as well as for the relevant case d = 4. Hence the denominator is in general
given by:

p̂2 =
dX

�=0

p̂2�: (C.2)

Now �rst, the three most elementary integrals are:Z
BZ

ddp

(2�)d
p̂2�
p̂2

=
1

d
(C.3)

Z
BZ

ddp

(2�)d
1

p̂2
=: �0 (C.4)

Z
BZ

ddp

(2�)d
p̂�
p̂2

= 0; (C.5)

the �rst following from the symmetry of the lattice, the third from the fact
that the integrand is odd, and the second simply being a de�nition of the one
remaining constant �0. This constant can be calculated more easily by noting
that the corresponding integral can be rewritten in the following way:Z

BZ

ddp

(2�)d
1

p̂2
=

Z 1

0
dt

Z
BZ

ddp

(2�)d
e�tp̂

2

=

Z 1

0
dt

Z
BZ

ddp

(2�)d
exp

0@�4t dX
�=0

sin2(p�=2)

1A
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=

Z 1

0
dt

0@ �Z
��

dp

2�
exp

�
�4t sin2(p=2)

�1Ad

=

Z 1

0
dte�2td

0@ �Z
��

dp

2�
e�2t cos(p)

1Ad

=
1

2

Z 1

0
dt e�tdId0 (t); (C.6)

where it has been used that the integral

�Z
��

dx e�t cos(x)

gives 2� times the Bessel function I0(t). The remaining one-dimensional integral
can be evaluated using numerical integration routines much more easily than
the original d-dimensional one. In the relevant case d = 4, the explicit result is:

�0 � 0:154933: (C.7)

From these three elementary integrals, one immediately gets:Z
BZ

ddp

(2�)d
p̂2�
(p̂2)2

=
1

d
�0: (C.8)

The general idea to treat the more complicated integrals can be found in ap-
pendix B of [37]; they can be evaluated using partial integration. For example:

0 =

Z
BZ

ddp

(2�)d
@

@p�

sin(p�)

p̂2

=

Z
BZ

ddp

(2�)d

�
cos(p�)

p̂2
�
sin(p�) � 4 sin(p�=2) cos(p�=2)

(p̂2)2

�

=

Z
BZ

ddp

(2�)d

 
1� 2 sin(p�=2)

2

p̂2
� 8

sin2(p�=2) cos
2(p�=2)

(p̂2)2

!

=

Z
BZ

ddp

(2�)d

 
1� 1

2 p̂
2
�

p̂2
� 2

p̂2� �
1
4 p̂

4
�

(p̂2)2

!
(C.9)

and therefore, using the elementary integrals mentioned above:Z
BZ

ddp

(2�)d
p̂4�
(p̂2)2

=
4� 2d

d
�0 +

1

d
: (C.10)

Now make again use of the symmetry of the lattice:

1 =

Z
BZ

ddp

(2�)d
(p̂2)2

(p̂2)2

= d

Z
BZ

ddp

(2�)d
p̂4�
(p̂2)2

+ (d2 � d)

Z
BZ

ddp

(2�)d
p̂2�p̂

2
�

(p̂2)2
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with � 6= � in the second term. This gives:

Z
BZ

ddp

(2�)d
p̂2�p̂

2
�

(p̂2)2
=

2d� 4

d(d� 1)
�0 for � 6= �: (C.11)

Using the same methods, all integrals of the type (C.1) can be evaluated.
The results up to n = 2 are given here:

Z
BZ

ddp

(2�)d
p̂2�p̂

2
�

(p̂2)2
= Æ��(

4� 2d

d
�0 +

1

d
) + (1� Æ��)

2d� 4

d(d� 1)
�0

= Æ��(��0 +
1

4
) + (1� Æ��)

1

3
�0

= (
4� 2d

d� 1
�0 +

1

d
)Æ�� +

2d� 4

d(d� 1)
�0

= (�
4

3
�0 +

1

4
)Æ�� +

1

3
�0 (C.12)Z

BZ

ddq

(2�)d

d(p+ q)
2

q̂2
= p̂2

�
�0 �

1

2d

�
+ 1: (C.13)

For n = 3, one needs an additional constant, which is de�ned in the following
way:

�1 := (d� 4)

Z
BZ

ddp

(2�)d
1

(p̂2)2
(C.14)

Then one gets the following results:

Z
BZ

ddp

(2�)d
p̂2�
(p̂2)3

=
1

d
�1 (C.15)

Z
BZ

ddp

(2�)d

�
p̂2�

�2
(p̂2)3

=
1

2d
�0 �

1

d
�1 (C.16)

Z
BZ

ddp

(2�)d
p̂2�p̂

2
�

(p̂2)3
=

1

2d(d� 1)
�0 +

1

d(d � 1)
�1 for � 6= � (C.17)

Z
BZ

ddp

(2�)d

�
p̂2�

�3
(p̂2)3

=
3� 2d

d
�0 +

1

d
�
4

d
�1 (C.18)

Z
BZ

ddp

(2�)d

�
p̂2�

�2
p̂2�

(p̂2)3
=

1

d(d� 1)
�0 +

4

d(d� 1)
�1 for � 6= � (C.19)

Z
BZ

ddp

(2�)d
p̂2�p̂

2
� p̂

2
�

(p̂2)3
=

2d� 6

d(d� 1)(d � 2)
�0 �

8

d(d � 1)(d� 2)
�1 (C.20)

for � 6= � 6= �
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For d! 4, the additional constant �1 can be calculated exactly by extracting
the infrared divergence: The integralZ

BZ

ddp

(2�)d
1

(p̂2)2

is divergent for p! 0. But in that limit, p̂2 can be replaced by p2:

lim
d!4

�1 = lim
d!4

(d� 4)

Z
BZ

ddp

(2�)d
1

(p2)2
:

Additionally, the region of integration can be restricted to a (small) sphere
around the origin:

lim
d!4

�1 = lim
d!4

(d� 4)

Z
d
d

Z R

0
pd�1

dp

(2�)d
1

p4
= lim

d!4


d

(2�)d
Rd�4;

where 
d is the surface of the d-dimensional sphere. Taking the limit and
inserting the explicit value 
4 =

1
2(2�)

2, one �nally gets:

lim
d!4

�1 =
1

2(2�)2
: (C.21)



Appendix D

Fourier transform of the
potential

In section 2.1, the following expression for the quark-antiquark potential in
momentum space was given:

V (~q2) = �
g20(a)

~q2
C2(F )

�

"
1 + g20(a)

"
�0

 
ln

�2

a2~q2
� 
 +

31

33

!
�

�A(1; 0; N)

4�
+R(N)

##
:

(D.1)

In order to get the dependance of the potential on R̂, one has to perform
a Fourier transformation. In the literature usually only the result is given;
here I explain explicitly how the calculation can be done. The �rst term is
easy|simply use the residual theorem:

Z
d3q

(2�)3
1

~q2
ei~q�

~R

= lim
�!0

Z
d3q

(2�)3
1

~q2 + �2
ei~q�

~R = lim
�!0

1

(2�)2

1Z
0

q2dq

1Z
�1

dx
1

q2 + �2
eiqRx

= lim
�!0

1

(2�)2iR

1Z
�1

q

q2 + �2
eiqRdq = lim

�!0

1

4�R
e��r

=
1

4�R
: (D.2)

In the second term, additional to the pole, there is a branch cut on the
positive imaginary axis because of the logarithm. Thus one has to use a more
complicated path of integration:

Z
d3q

(2�)3

ln
�
~q2

�2

�
~q2

ei~q�
~R = lim

�;�!0

Z
d3q

(2�)3

ln
�
~q2+�2

�2

�
~q2 + �2

ei~q�
~R
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= lim
�;�!0

1

(2�)2iR

1Z
�1

q

q2 + �2
ln

 
q2 + �2

�2

!
eiqRdq

= lim
�;�!0

1

(2�)2iR

26664
Z

q

q2 + �2
ln

 
q2 + �2

�2

!
eiqRdq

�

Z
q

q2 + �2
ln

 
q2 + �2

�2

!
eiqRdq

�

Z
q

q2 + �2
ln

 
q2 + �2

�2

!
eiqRdq

37775 (D.3)

The �rst term can again be evaluated using the residual theorem, the second
vanishes, and the third gives a contribution from the discontinuity across the
branch cut:

= lim
�!0

1

4�R
ln

 
�2

�2

!
� lim

�;�!0

1

(2�)2iR

i1��Z
i���

2iIm ln
�
q2+�2

�2

�
q

eiqRdq

= lim
�!0

1

4�R
ln

 
�2

�2

!
+ lim

�!0

1

2�R

i1Z
i�

1

q
eiqRdq

= lim
�!0

1

4�R
ln

 
�2

�2

!
+ lim

�!0

1

2�R

1Z
�R

1

x
e�xdx (D.4)

Now the second term gives a modi�ed Gamma function, which can be evaluated
exactly in the limit � ! 0:

= lim
�!0

1

4�R
ln

 
�2

�2

!
+ lim

�!0

1

2�R
�(0; �R)

= lim
�!0

1

4�R
ln

 
�2

�2

!
� lim

�!0

1

2�R
(ln(�R) + 
)

= �
ln(�2R2) + 2


4�R
: (D.5)

Putting everything together, the potential in coordinate space is given by:

V (R) = �
g20(a)

4�R
C2(F )

�

"
1 + g20(a)

"
�0

 
ln
�2R2

a2
+ 
 +

31

33

!
�

�A(1; 0; N)

4�
+R(N)

##
:

(D.6)
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